REPÚBLICA DEL PERÚ SECTOR ENERGÍA Y MINAS INSTITUTO GEOLÓGICO MINERO Y METALÚRGICO INGEMMET

ESTUDIO DE LOS RECURSOS MINERALES DEL PERÚ BLOQUE Nº 2 - FRANJA Nº 4

Por: Mario Carpio Ronquillo Yvan Hurtado Guerrero

父 INGEMMET

DIRECCIÓN DE GEOLOGÍA ECONÓMICA Y PROSPECCIÓN MINERA

LIMA – PERU Enero - 2004

REPÚBLICA DEL PERÚ SECTOR ENERGÍA Y MINAS INSTITUTO GEOLÓGICO MINERO Y METALÚRGICO INGEMMET

ESTUDIO DE LOS RECURSOS MINERALES DEL PERÚ BLOQUE Nº 2 - FRANJA Nº 4

Por: Mario Carpio Ronquillo Yvan Hurtado Guerrero

DIRECCIÓN DE GEOLOGÍA ECONÓMICA Y PROSPECCIÓN MINERA

LIMA – PERU Enero - 2004

GEOLOGÍA ECONOMICA DEL BLOQUE Nº 2 - FRANJA Nº 4

3.1. MINERALES METÁLICOS

3.1.1. Generalidades

El programa sobre el estudio de los recursos minerales del país, en lo que respecta a mineralización metálica, prosiguió mediante trabajos geológicos preliminares puntuales en terrenos del Bloque Nº 2, Franja Nº 4, considerando principalmente, minas productivas, ocurrencias mineralizadas y zonas con hidrotermalismo conspicuo detectadas mediante procesos de teledetección (imágenes satelitales); en cuyo marco, se realizaron estudios generalizados de geología económica: rasgos tectónicos estructurales y magmáticos asociados a procesos mineralizantes, identificación de tipos de alteración hidrotermal, tipos de mineralización de mena y rocas huésped, entre los más importantes. Esta información, también, será utilizada para una categorización metalogenética posterior.

Investigaciones metalogénicas en el área dan a conocer que existen evidencias de campo sobre asociaciones minerales litosféricas emplazadas en vetas que contienen ensambles de minerales magmáticos, como es el caso de los yacimientos ubicados en el distrito minero de Cerro de Pasco, revelando la presencia de 2 épocas metalogenéticas. Existen otros distritos que presentan asociaciones minerales de una metalogenia simple, tales como Milpo, Atacocha, Colquijirca, San Gregorio y Quicay, que podrían revelar también una metalogenia bimodal.

3.1.2. Emplazamiento de la Mineralización

La mineralización económica se encuentra emplazada en secuencias de rocas sedimentarias del Mesozoico, las que cubren la parte central del área estudiada y relegadas, se presentan formaciones volcánicas jóvenes del Paleógeno-Neógeno, rocas metamórficas del Paleozoico al Este y volcánicos del Cretácico (Formación Casma) hacia el Oeste. Estas formaciones rocosas están afectadas por cuerpos

magmáticos y stocks hipabisales con edades que van del Paleozoico al Neógeno. A través del tiempo geológico, la migración de placas ha generado en estos terrenos procesos tectónicos - estructurales, vías de migración de soluciones mineralizantes, conformando principalmente mega zonas de deformación andina de rumbo NO–SE, con decenas de kilómetros de ancho, como es el caso de los alineamientos paralelos que involucran las mineralizaciones de los distritos mineros Casapalca y Cerro de Pasco, consideradas como zonas de bonanza, cuya producción en conjunto representa aproximadamente el 70 % de la producción de polimetálicos del país. Es muy probable que los sistemas mineralizados del área tengan estrecha relación con eventos tectónicos y magmáticos acaecidos durante el Terciario superior, especialmente Neógeno.

PRINCIPALES MINAS EN ACTIVIDAD

MINA VOLCAN

Ubicación.- Pertenece al distrito de Chaupimarca y Yanacancha, provincia de Pasco, Región de Cerro de Pasco. Se encuentra en las coordenadas UTM, 8 819 571 N 362 323 E, con una altitud de 4 300 m.

Accesibilidad.- Desde Lima se sigue por la Carretera Central hasta el Km. 300, carretera asfaltada, hasta la Ciudad de Pasco.

Marco Geológico.- La geología local involucra tres unidades estratigráficas diferentes: Grupo Excelsior compuesto por filitas, cuarcitas y lutitas carbonosas (Siluriano-Devónico), Grupo Pucará compuesto esencialmente por calizas (Triásico-Jurásico), rocas igneas y volcanoclásticas "Aglomerado Rumiallana", que se encuentran rellenando una estructura aproximadamente circular con diámetro promedio de 2.5 km, que corresponde al cuello del extinguido volcán "Rica Cerreña". Dentro de esta estructura se identifica una fase explosiva consistentes en aglomerados y tufos, y una fase intrusiva de composición dacítica a cuarzo monzonítica.

Mineralización.- La mineralización se presenta como cuerpos de silica-pirita en una área de 1800 x 300 m; en los niveles superiores, ha sido reconocido hasta el nivel 2300 aproximadamente 700 m. de diferencia de cotas desde superficie, el área disminuye en profundidad.

Cuerpos masivos de Pb-Zn en una área de 1500 x 300 m; se ubican en el contacto del cuerpo sílica-pirita con las calizas Pucará, otro control en la deposición mineral son: los pliegues transversales. La mineralización profundiza por debajo del nivel 2100, respecto a superficie. La esfalerita da altos contenidos de Fe, 8 % - 14 % existiendo 4 variedades diferenciadas por sus relaciones de disposición.

Las Vetas y Cuerpos de Cu – Ag tienen un rumbo dominante E-W, extendiéndose desde el cuerpo silica-pirita hasta el mismo cuello volcánico donde cortan al aglomerado e incluso a los diques de monzonita cuarcifera. El relleno mineral predominante es de enargita- pirita con cantidades menores de oro libre, luzonita, tenantita-tetraedrita, calcopirita, galena y esfalerita, distribuidos en un arreglo zonado con mineralización de Cu-Au en la parte central y gradando a Ag-Bi hacia los extremos. Datos de laboratorio de INGEMMET:

CODIGO DE MUESTRA	Ag ppm	Cu ppm	Pb ppm	Zn ppm	Fe ppm	Mn ppm	Hg ppm	As ppm	Co ppm
0402039	96	217	32699	81129	262000	3196	2.1	414	-
0402040	11	122	2291	3665	70695	1563	0.24	367	12
0402041	1469	75	253000	191000	129000	2000	0.63	340	-
0402042	239	60	134000	105000	289000	36085	0.61	148	

PROYECTO MARCAPUNTA (Cu-Au)

Ubicación.- Se ubica en el centro del Distrito Minero de Colquijirca, en las altiplanicies de los Andes centrales del Perú. Se encuentra en las Coordenadas UTM. 8 809 339 N 360 555 E, a una altitud de 4200 y 4500 m. Esta al Sur del mundialmente conocido Distrito Minero de Cerro de Pasco.

Accesibilidad.- El acceso se realiza desde Lima por la Carretera Central, a la altura del km 310, la carretera es asfaltada.

Marco Geológico.- Conformada por areniscas rojas del Grupo Mitu de edad Permotriásica seguidas por calizas marinas del Grupo Pucará de edad Triásico-liásica y facies continentales de brechas, conglomerados y carbonatos de la Formación Calera de edad Eoceno superior. Estas unidades son intruidas y a la vez recubiertas por un conjunto de domos dacíticos y piroclastos del centro volcánico Marcapunta, cuyo emplazamiento fue datado entre 11.5 y 12.4 millones de años. La falla Longitudinal de dirección Norte-Sur es la estructura más importante en la región, ya que controló la sedimentación desde el Triásico y el emplazamiento de los centros volcánicos de Marcapunta y Cerro de Pasco.

Mineralización.- El volcán Marcapunta es el principal centro generador de la mineralización y alteración hidrotermal para todo el Distrito Minero de Colquijirca. La fuerte alteración alunítica reconocida en Marcapunta fue datada entre 11.6 y 10.6 millones de años. Las alteraciones se disponen en corredores estructurales de dirección Este-Oeste de 10 a 50 m de ancho y están caracterizadas por sílice porosa, cuarzo-alunita y cuarzo-alunita-(dickita). Las rocas caja para estos crestones prominentes son con alteración argílica y propilítica. La mineralización de enargita-oro, descubierta en la periferia inmediata del centro volcánico, reemplaza a las brechas y conglomerados calcáreos de la Formación Calera. Se encuentra entrampada entre los domos dacíticos estériles suprayacentes -los cuales se disponen en una geometría de hongo- y las areniscas y lutitas rojas del Grupo Mitu infrayacentes. Los yacimientos de enargita forman cuerpos potentes de 10 a 100 m de potencia con pirita masiva, enargita y trazas de covelita con oro.

La campaña de exploraciones por Cu-Au del 2002 fue una continuación de aquellas emprendidas entre los años 1982-1985 y 1994-1996 en el flanco Norte del Cerro Marcapunta. Allí se estimó un recurso de 50 millones de toneladas con 1.9% Cu, 0.35 g/t Au, 0.8 oz/t Ag y 0.6% As, en base a 74 sondajes que involucran 20,964 m de perforación diamantina. Durante esta última campaña, se realizó cartografía geológica a escala 1:1000, se tomó 800 muestras geoquímicas selectivas y se levantó 65 km. de

perfiles gravimétricos. La gravimetría define una marcada anomalía -la que fue evaluada con 2,830 m de perforación diamantina en ocho sondajes-. Estos trabajos nos han orientado a centrar la perforación en el lado Oeste del centro volcánico Marcapunta. Cinco de los ocho sondajes fueron ubicados a lo largo de 1.8 km. en dirección Norte-Sur, en una franja sin información geológica previa; cuatro interceptaron mineral en el horizonte prospectivo dándonos resultados alentadores.

Por lo tanto, en Marcapunta estamos ante un yacimiento de enargita-oro con 100 millones de toneladas con 1.5% Cu, 1.0 g/t Au, 0.7 oz/t Ag y 0.4% As, Es realmente prematuro referirse a tonelajes indicados por los recientes sondajes realizados. Sin embargo, estos demuestran la presencia de un potencial adicional que estimamos en otros 50 millones de toneladas con leyes en el orden de 1.2% Cu, 1.4 g/t Au, 0.6 oz/t Ag y 0.3% As. Estos requiere más trabajos de perforación en el corto y mediano plazo, así como avances en la investigación metalúrgica. Esta última se hace necesaria ante el alto contenido de As de sus minerales y la naturaleza refractaria del oro indicado en los cuerpos de Marcapunta Oeste. (LIGARDA, R. 2003).

CODIGO DE	Ag	Cu	Pb	Zn	Mo	Fe	Mn	Hg	As
MUESTRA	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
0402095	155	513	6429	1935	5	70287	315	50	2952

MINA COLQUIJIRCA (Ag - Pb - Zn)

Ubicación.- El centro minero de Colquijirca, se encuentra ubicado en la sierra central del Perú a 10 Km. Al sur de la ciudad de cerro de Pasco, pertenece al distrito de Tinyahuarco provincia y Región de Pasco. Sus coordenadas UTM son 8 811 412 N y 360 920 E.

Accesibilidad.- Se accede desde Lima por la Carretera Central, a la altura del km 310, carretera asfaltada.

Marco Geológico.- Las rocas más antiguas que afloran son las fillitas del Grupo Excelsior de edad Silúrico – Devónico estas se encuentran al norte del distrito,

sobreyaciendo encontramos al Grupo Mitu del Pérmico – Triásico aflorando al oeste y este del área en mención con una potencia aproximada de 1000 m.

Los carbonatos eocenos que afloran en la parte central del distrito minero son la formación Pocobamba constituidos fundamentalmente por calizas, dolomías, margas y horizontes arcillosos, tobáceos y arenosos que yacen discordantemente sobre el grupo Mitu; el miembro inferior de la Formación Pocobamba esta constituido por el conglomerado Shuco, formado por clastos de erosión del Grupo Pucara; el miembro superior esta constituida por las calizas Calera de 250 m. de grosor, en donde se halla toda la mineralización de Zn_Pb-Ag.

Estructuralmente se aprecia el eje del plegamiento, este tiene una dirección NNO, el cual se deformó entre el Oligoceno superior y Mioceno inferior (Fase Quechua I).

Cabe mencionar que en la parte central del distrito se puede apreciar un sistema de domos de naturaleza que va desde dacítas a cuarzo latítas con una edad promedio de 11,5 +/- 0,4 Ma. lo que correspondería al complejo volcánico Marcapunta con evidencias de estructuras de colapso.

Mineralización.- El yacimiento de Zn, Pb y Ag se da como cuerpos delgados estratiformes (mantos) pero a una escala mas al detalle se muestra como discordante a las calizas. La mineralización consiste de esfalerita, galena y pirita en mayor cantidad este ultimo que la Enargita; como gangas comunes observamos baritina, carbonatos y cuarzo en menor cantidad.

La ley promedio de mina es del orden: 6% Zn, 2.5 % Pb. Y 4 oz Ag/TC con reservas que albergan mas de 25 Mt. La producción tratada desde el año 2000 está en aproximadamente 2 950 t/día.

CODIGO DE	Au	Ag	Cu	Pb	Zn	Fe	Mn	Hg	As
MUESTRA	g/TM	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
0402089	0.025	162	8444	74823	252000	57231	1082	2.7	184
0402091	-	1659	551	416000	66722	33115	2319	0.48	84
0402092	9.17	58	220000	2776	2967	139000	1507	110	9257
0402093	1.27	11	32414	1443	1594	185000	719	9.4	1893

MINA MILPO (Pb - Zn)

Ubicación.- Pertenece al distrito de Yarusyacán, provincia de Cerro de Pasco, Región Pasco. Se encuentra en las coordenadas UTM. 8 827 870 N y 368 315 E, a una altitud de 4 100 m, esta situado a 16 Km al NE de la localidad de Cerro de Pasco.

Accesibilidad.- La accesibilidad desde Lima se realiza mediante la Carretera Central Lima – La Oroya – Cerro de Pasco altura del Km. 305, carretera asfaltada, se sigue un desvío desde Cerro de Pasco por una carretera afirmada (16 Km) hasta la mina..

Marco Geológico.- En la zona afloran calizas del Grupo Pucará de color gris oscuro a negro parduzco con intercalación de lutitas calcáreas con nódulos de chert, del Triásico superior – Jurasico inferior de rumbo N 20° O, buzamiento 85° NE; estas se presentan a manera de capas de 0.10 a 0.50 m. de espesor con una potencia total de 2 000 m. están presentes los pisos Chambará, Aramachay el Condorsinga, se encuentra erosionado. En discordancia yacen las areniscas del Grupo Goyllarizquisga, del Cretáceo inferior, de rumbo NS, buzamiento 55° E, sobre este grupo sobreyacen concordantemente las calizas de la Formación Machay de edad Cretácica media con rumbo y buzamiento similar, está representada por calizas arenosas de color gris y pardo claro a amarillento en bancos de 0.10 a 0.40 m de espesor, con horizontes interestratificados de basaltos de color marrón de textura amigdaloide, con una potencia de 100 m.

Mineralización.- El yacimiento Milpo esta emplazado en el contacto metamórfico del Intrusivo Milpo con rocas sedimentarias del Grupo Pucara, dándose la mineralización en la formación Aramachay en forma de cuerpos irregulares de variada magnitud tanto horizontal como vertical; también está dada a manera de vetas controladas por dos sistemas de fracturamiento relacionados con el elipsoide de deformación regional

CODIGO DE	Ag	Cu	Pb	Zn	Fe	Mn	Hg	As
MUESTRA	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
0402081	1470	1268	410000	102000	31238	1320	0.23	95

MINA ATACOCHA (Pb - Zn)

Ubicación.- Pertenece al distrito de yanacancha, provincia de Pasco, Región de Cerro de Pasco. Se encuentra en las coordenadas 8 830 758 N y 367 400 E, a una altitud de 4 000 m. a 15 km. al NE de la ciudad de Cerro de Pasco.

Accesibilidad.- El acceso desde la ciudad de Lima se realiza por la Carretera Central hasta el Km. 320, carretera asfaltada

Marco Geológico.- Esta se encuentra dada por los conglomerados, areniscas lutitas y lavas ácidas a intermedia del Grupo Mitu pertenecientes al Permico. Sobreyaciendo a esta encontramos a las calizas del Grupo Pucara del Triasico superior y Jurasico. En los alrededores se tiene areniscas y cuarcitas de la formación Goyllarisquizga del Cretácico inferior. De manera discordante a lo antes mencionado podemos observar a las calizas con una secuencia de lavas basálticas pertenecientes a la formación Machay del Cretácico medio; a manera de dacitas porfiríticas se presentan los stocks de Atacocha y Ayarragaran (en Santa Barbara) todas estas del Terciario.

Mineralización.- Es un yacimiento polimetálico de origen hidrotermal con una mineralización de sulfuros primarios de plomo, zinc, plata y cobre, con pequeños contenidos de oro y bismuto. Las zonas mineralizadas se emplazan sobre la gran falla Atacocha – Milpo con aproximadamente 20 km. de extensión

Au g/TM	Ag ppm	Cu ppm	Pb ppm	Zn ppm	Mo ppm	Fe ppm	Mn ppm	Hg ppm	As ppm	Co ppm
2.33	302	518	50266	94090	8	84098	12787	4.3	7987	-
0.30	977	891	403000	175000	14	57693	3020	2	1601	16
1.47	295	15037			- Ω		77.00	8.8	4741	-
	g/TM 2.33 0.30	g/TM ppm 2.33 302 0.30 977 1.47 295	g/TM ppm ppm 2.33 302 518 0.30 977 891 1.47 295 15037	g/TM ppm ppm ppm 2.33 302 518 50266 0.30 977 891 403000 1.47 295 15037 438000	g/TM ppm ppm ppm ppm 2.33 302 518 50266 94090 0.30 977 891 403000 175000 1.47 295 15037 438000 60570	g/TM ppm ppm ppm ppm ppm 2.33 302 518 50266 94090 8 0.30 977 891 403000 175000 14 1.47 295 15037 438000 60570 -	g/TM ppm ppm ppm ppm ppm ppm ppm 2.33 302 518 50266 94090 8 84098 0.30 977 891 403000 175000 14 57693 1.47 295 15037 438000 60570 - 78393	g/TM ppm ppm <td>g/TM ppm ppm<td>g/TM ppm ppm</td></td>	g/TM ppm ppm <td>g/TM ppm ppm</td>	g/TM ppm ppm

MINA QUICAY (Au)

Ubicación.- Pertenece al distrito de Rancas, provincia de Cerro de Pasco. Se encuentra en las coordenadas 8 818 365 N y 348 710 E, a una altitud de 4 280 y 4 420 m Geográficamente se ubica en una meseta interandina entre las cordilleras central y Occidental.

Accesibilidad.- Por la Carretera Central hasta Cerro de Pasco 300 Km, carretera asfaltada, se sigue hasta Pacoyan 17 Km, carretera afirmada y luego por una trocha hasta la mina 3 Km.

Marco Geológico.- En la zona afloran lavas, tobas y piroclásticos de composición andesítica a dacítica de edad Eoceno superior hacia centro encontramos brechas hidrotermales. Estas se encuentran intruidas por rocas intrusivas de composición dioritica a cuarzo monzonitica de edad terciaria esta ultima seria probablemente la que trajo la mineralización. Se conoce que existen dos sistemas de fallamiento: Fallas N 20° O con un buzamiento 85° NE y fallas N50° E con un buzamiento 85° NO (Falla Cori).

Mineralización.- Esta relacionada a la zona de alteración de argílica avanzada, y dentro de ella los altos valores se asociada los cuerpos de sílice cavernosa y en menor grado a las brechas hidrotermales.

En las zonas de sílice la mineralización de oro se encuentra junto a hematita, limonita y jarosita, finamente dispersa o en oquedades e intersticios producidos por la lixiviación de sulfuros primarios. Los procesos de oxidación cercanos a superficie han producido cierto enriquecimiento supergeno.

PROYECTO SAN GREGORIO (Zn, Pb, Ag)

Ubicación.- Se ubica en el centro del Distrito Minero de Colquijirca, en las altiplanicies de los Andes centrales del Perú. Se encuentra en las Coordenadas UTM. 8 804 918 N 360 517 E, a una altitud de 4 158 m. Esta al Sur del mundialmente conocido Distrito Minero de Cerro de Pasco.

Accesibilidad.- El acceso se realiza desde Lima por la Carretera Central, a la altura del km 298, carretera es asfaltada.

Marco Geológico.- Las rocas más antiguas que afloran son las fillitas del Grupo Excelsior de edad Silúrico – Devónico estas se encuentran al norte del distrito, sobreyaciendo encontramos al Grupo Mitu del Pérmico – Triásico aflorando al oeste y este del área en mención con una potencia aproximada de 1000 m.

Los carbonatos eocenos que afloran en la parte central del distrito minero son la Formación Pocobamba constituidos fundamentalmente por calizas, dolomías, margas y horizontes arcillosos, tobáceos y arenosos que yacen discordantemente sobre el Grupo Mitu; el miembro inferior de la Formación Pocobamba esta constituido por el conglomerado Shuco, formado por clastos de erosión del Grupo Pucara; el miembro superior esta constituida por las calizas Calera de 250 m. de grosor, en donde se halla toda la mineralización de Zn Pb-Ag.

Estructuralmente se aprecia el eje del plegamiento, este tiene una dirección NNO, el cual se deformó entre el Oligoceno superior y Mioceno inferior (Fase Quechua I).

Cabe mencionar que en la parte central del distrito se puede apreciar un sistema de domos de naturaleza que va desde dacítas a cuarzo latítas con una edad promedio de 11,5 +/- 0,4 Ma. lo que correspondería al complejo volcánico Marcapunta con evidencias de estructuras de colapso.

Mineralización.- El yacimiento de San Gregorio, se hospeda en carbonatos del Grupo Pucará, a 1 Km al sur de domos fuertemente alunitizados que se encuentran en la parte Sur del complejo volcánico de Marcapunta. Yacimiento se conoce solo por sondajes, pero rocas carbonatadas del Pucará completamente silicificadas afloran al Este del depósito, en el cerro Gualquepaqui, donde se encuentra una antigua mina que fue explotada por Bi-Ag.

El yacimiento está formado por potentes cuerpos irregulares de reemplazamiento, la asociación de minerales son esfalerita, galena, pirita y trazas de marcasita, el tamaño de grano en general son macroscópicamente invisibles. Las texturas de los sulfuros a nivel microscópico muestran en general diseminaciones, mosaicos relativamente

equigranulares con texturas de intercrecimiento relativamente simple y en algunos intervalos con reemplazamiento masivo también se observan intercrecimientos complejos (Fontboté y Bendezú, 1999)

Los carbonatos del Pucará están fuertemente alterados, las mayores concentraciones de sulfuros están contenidas en un material microgranular deleznable de aspecto arcilloso, producto de la descarbonatización de la roca y compuesto por el ensamble alunita-caolinita-cuarzo, conocido localmente como "sulfide rock" (material deleznable fuertemente argilizado, rico o no en sulfuros y del que se sospecha su litología original como calcárea).

Los minerales de alteración hipógena se presenta en estrecha asociación a la mena, La alunita ocurre tanto como cristales englobados en masas de caoliníta, como intercrecida con sulfuros y como inclusiones en cuarzo hidrotermal.

La composición química del "sulfide rock" es diferente a la de un carbonato por lo que en los primeros trabajos sobre el depósito hubo dificultades para reconocer que los carbonatos del Pucará constituyen la roca caja, correlaciones litoestratigráficas apoyadas por determinaciones paleontológicas (A. Pardo in Bendezú, 1977) y análisis FRX han confirmado que la "sulfide rock" deriva efectivamente de carbonatos del Grupo Pucará que han sido completamente descarbonatizados y metasomatizados.

PERFORACIÓN DDH	PROFUNDIDAD	Zn %	Pb %	Ag Oz/t	Fe %
13 G	63	10.28	3.04	0.1	4.41
14 G	50	12.76	3.60	0.64	4.64

Fuente: X Congreso Peruano de Geología Tomo I (Fontboté & Bendezú)

OCURRENCIAS MINERALES METALICAS - BLOQUE Nº 2 - FRANJA Nº 4

AID	NOMBRE	DPTO			COORD	ENADAS	TIPO DE	ELEMENTO	MINI	ERALES	AL TERACION	ROCA	FORMACIÓN	FDAD	FOTADO ACTUAL
N	NOMBRE	DPIO	HOJ	IA	NORTE	ESTE	YACIMIENTO	ELEMENTO	MENA	GANGA	ALTERACION	CAJA	GEOLÓGICA	EDAD	ESTADO ACTUAL
1	Rondoni	Huanuco	Ambo	21-k	8872674	345884	Skarn ?	Cu - Au	cp - Po- Cris	py - Fe	Silicificación	Diorita	Diorita	Kp-di	Inactivo
2	Yanapacho	Huanuco	Ambo	21-k	8874620	348136	Skam	Cu - Pb - Zn	gn - ef - cp	py - cz - Fe	Granitización	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
3	Pachurragra	Huanuco	Ambo	21-k	8876351	364222	Skarn	Cu - Pb Zn	gn - ef - cp	py - cz - Fe	Limonítica	Lutitas	Frn. Ambo	Ci - a	Inactivo
4	Llunco	Huanuco	Ambo	21-k	8880138	370564	Filoniano	Pb - Zn	gn - ef	cz	Silicificación	Intrusivo	Granodiorita	Ps	Inactivo
5	Huaracalla	Huanuco	Ambo	21-k	8874953	369258	Filoniano	Cu - Pb - Zn	ср	cz	Oxidación	Lutitas	Fm. Ambo	Ci - a	Inactivo
6	Muña Pampa	Huanuco	Ambo	21-k	8867564	369541	Filoniano	Cu - Pb Zn	ср	Fe - cz	Oxidación	Lutitas	Fm. Ambo	Ci - a	Inactivo
7	Timpujiaco	Huanuco	Ambo	21-k	8867100	368891	Filoniano	Cu - Pb -Zn	ср	Fe - cz	Oxidación	Lutitas	Fm. Ambo	Pi	Inactivo
8	Colqui	Huanuco	Ambo	21-k	8859507	382035	Filoniano	Ag - Pb -Zn	gn - ef - cp	py - cz - Fe	Propilitica	Sub Volcánico	Imtrusivo	Paleogeno	Inactivo
9	Cochacalla	Huanuco	Ambo	21-k	8853678	368854	Filoniano	Cu	ср	Mlq - Az	Limonitización	Areniscas	Fm. Ambo	Ci - a	Inactivo
10	Pariacancha	Huanuco	Ambo	21-k	8848243	360233	Filoniano	Ag - Pb -Zn	gn - ef - cp	py - cz	Silicificación	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
11	Mal Paso	Huanuco	Ambo	21-k	8853070	359896	Filoniano	Ag - Cu - Pb - Zn	ef - cp - gn	py - cz -mt	Silicificación	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
12	Pachachaca	Huanuco	Ambo	21-k	8851693	350429	Filoniano	Pb - Zn - Ag	gn - ef	py - cz	Limonítica	Granodiorita	Gpo. Pucara	Ts - Ji	Inactivo
13	Yanacaca	Huanuco	Ambo	21-k	8851693	350429	Filoniano	Ag - Pb	gn - apy	py - cz	Limonítica	metamorfico	Excelcior	Pe - cme	Inactivo
14	Puente	Huanuco	Ambo	21-k	8853388	354091	Filoniano	Ag - Pb	gn - apy	py - cz	Limonítica	metamorfico	Excelcior	Pe - cme	Inactivo
15	Antapirca	Huanuco	Ambo	21-k	8871758	351739	Filoniano	Ag - Pb	gn - apy	py - cz	Limonítica	rnetamorfico	Excelcior	Pe - cme	Inactivo
16	Chacayan	Huanuco	Ambo	21-k	8847834	341478	Filoniano	Cu		cz	Cloritización	Esquistos	Excelcior	Pe - cme	Inactivo
17	Shimana	Huanuco	Ambo	21-k	8848181	347082	Filoniano	Cu		cz	Silicificación	Esquistos	Excelcior	Pe - cme	Inactivo
18	Huaychaco	Huanuco	Ambo	21-k	8862665	353588	Filoniano	Pb -Zn	gn - ef	py - cz	Silicificación	Areniscas	Fm. Mitu	Ps - m	Inactivo
19	Volcan	Pasco	Cº de Pasco	22-k	8819571	362323	Cuerpo - Vetas	Pb - Zn	gn - cp - ef	py - cz	Caolinización	Calizas	Gpo. Pucara	Ts - Ji	Activo
20	Quicay	Pasco	Cº de Pasco	22-k	8818365	348710	Diseminado	Au	Au	Py -hm-cz	Argilización	Andesita	Volc. Rumillana	Nm-t	Activo
21	Gleclia II	Pasco	Cº de Pasco	22-k	8815895	361580	Manto	Ag - Zn	gn -ef	py - cz	Silicificación	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
22	Santa María	Pasco	Cº de Pasco	22-k	8814880	370434	Filoniano	Pb - Zn	smt	py - sid	Dolomitización	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
23	Atacocha	Pasco	Cº de Pasco	22-k	8830758	367400	Filoniano	Pb - Zn	gn - ef	cz - cac - py	Silicificación	Calizas	Gpo. Pucara	Ts - Ji	Activo
24	Milpo	Pasco	Cº de Pasco	22-k	8827507	368077	Filoniano	Pb - Zn	gn - ef	cz - cac - py	Silicificación	Calizas	Gpo. Pucara	Ts - Ji	Activo
25	San Miguel	Pasco	Cº de Pasco	22-k	8825566	369511	Filoniano	Pb - Zn	gn - ef	cz - cac - py	Silicificación	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
26	Humanrauca	Pasco	Cº de Pasco	22-k	8827435	372058	Filoniano	Pb - Zn	gn - ef	cz - cac - py	Silicificación	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
27	Chusquitambo	Pasco	Cº de Pasco	22-k	8826032	371830	Filoniano	Pb - Zn	gn - ef	cz - cac - py	Silicificación	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
28	San Judas Tadeo	Pasco	Cº de Pasco	22-k	8826120	370378	Filoniano	Pb - Zn	gn - ef	cz - cac - py	Silicificación	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
29	Colquijirca	Pasco	Cº de Pasco	22-k	8811412	360920	Manto	Ag - Pb - Zn	gn - ef - tnn	cz - py - dlm	Silicificación	Calizas	Gpo. Pucara	Ts - Ji	Activo
30	Marcapunta	Pasco	Cº de Pasco	22-k	8809339	360555	Manto	Au - Cu	Au - en - cv	py - cz - cac	Argilización	Calizas	Gpo. Pucara	Ts - Ji	Activo
31	El Pilar	Pasco	C° de Pasco	22-k	8819285	363101	Cuerpo - Vetas	Ag - Pb - Zn	gn - ef - cp	py - cz - po	Silicificación	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
32	Majada	Pasco	Cº de Pasco	22-k	8833275	355682	Filoniano	Pb - Zn	gn - ef	py - cz	Dolomitización	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
33	Chalhuan	Huanuco	Ambo	21-k	8839615	354141	Filoniano	Pb - Zn	gn - ef	py - cz	Silicificación	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
34	San Gregorio	Pasco	Cº de Pasco	22-k	8804918	360517	Cuerpo	Zn - Pb - Ag	ef - gn	py - cp - cz	Descarbonitización	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
35	Tranca	Pasco	Ambo	21-k	8869800	359869	Filoniano	Cu - Pb - Zn	cp -gn - ef	cz - py	Silicificación	Lutitas	Fm. Ambo	Ci-a	Inactivo
36	Minasnío	Huanuço	Ambo	21-k	8872011	360086	Filoniano	Cu - Pb - Zn	cp -gn - ef	cz - py	Silicificación	Lutitas	Fm. Ambo	Ci - a	Inactivo
37	Hunamaran	Huanuco	Ambo	21-k	8869675	362271	Filoniano	Cu - Pb - Zn	cp -gn - ef	cz - py	Silicificación	Lutitas	Fm. Ambo	Ci-a	Inactivo
38	Shocohpampa	Huanuco	Ambo	21-k	8862337	348133	Filoniano	Pb - Zn	gn	cz	Silicificación	Esquistos	Comp. Marañon	Pe - cme	Inactivo

OCURRENCIAS MINERALES METALICAS - BLOQUE Nº 2 - FRANJA Nº 4

N°	NOMBRE	DPTO	нол	IA	COORD	ENADAS	TIPO DE	ELEMENTO	MIN	IERALES	ALTERACION	ROCA	FORMACIÓN	EDAD	ESTADO ACTUAL
	NOMBRE	Drio	1103	,A	NORTE	ESTE	YACIMIENTO	ELLMENTO	MENA	GANGA	ALTERACION	CAJA	GEOLÓGICA	EDAD	ESTADO ACTUAL
39	Parcoy	Huanuco	Ambo	21-k	8862736	352684	Filoniano	Cu - Pb - Zn	cp -gn - ef	cz - py	Silicificación	Lutitas	Fm. Ambo	Ci - a	Inactivo
40	Mesapata	Huanuco	Ambo	21-k	8867567	362388	Filoniano	Cu - Pb - Zn	cp -gn - ef	cz - py	Silicificación	Lutitas	Fm. Ambo	Ci - a	Inactivo
41	Patashmina	Huanuco	Ambo	21-k	8881548	342606	Filoniano	Cu - Pb - Zn	cp -gn - ef	cz - py	Silicificación	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
42	Auquincoto	Huanuco	Ambo	21-k	8884153	359056	Filoniano	Pb - Zn	gn - ef	cz -py	Silicificación	Lutitas	Fm. Ambo	Ci - a	Inactivo
43	Sinsumachay	Huanuco	Ambo	21-k	8883680	359847	Filoniano	Pb - Zn	gn - ef	cz -py	Silicificación	Lutitas	Fm. Ambo	Ci - a	Inactivo
44	Yuragasha	Huanuco	Ambo	21-k	8844556	384760	Filoniano	Cu - Pb - Zn	cp - gn - ef	cz - py	Silicificación	Granodiorita	Granodiorita	Ps - gr	Inactivo
45	Corralcancha	Huanuco	Ambo	21-k	8853484	379064	Diseminado	Cu	ср	py - cz	Silicificación	Granodiorita	Granodiorita	Ps - gr	Inactivo
46	Yacucancha	Pasco	C° de Pasco	22-k	8817906	377312	Filoniano	Pb - Zn	gn - ef	py - cz		Areniscas	Fm. Goyarisquisga	Ki - g	Inactivo
47	Jogochucchu	Huanuco	Ambo	21-k	8848808	348817	Filoniano	Pb - Zn - Ag	gn - ef - jm	py - mc - sid	Limonitización	Pizarras	Exelcior	Si - d	Inactivo
48	Manuela	Huanuco	Ambo	21-k	8846752	350144	Filoniano	Pb - Zn - Ag	gn - ef - jm	py - mc - sid	Limonitización	Pizarras	Exelcior	Si - d	Inactivo
49	Yaruchahua	Huanuco	Ambo	21-k	8845500	353782	Filoniano	Pb - Zn - Ag	gn - ef - jm	py - mc - sid	Limonitización	Pizarras	Exelcior	Si - d	Inactivo
50	Chagahuanushga	Huanuco	Ambo	21-k	8843921	358060	Filoniano	Pb - Zn - Ag	gn - ef - jm	py - mc - sid	Limonitización	Pizarras	Exelcior	Si - d	Inactivo
51	Tarata	Junin	Ulcumayo	22-1	8831833	397855	Filoniano	Au	Au	cz - py - cp - cc	Caolinización	Granodiorita	Batol, Huachon	Ti	Inactivo
52	Villan	Junin	Ulcumayo	22-1	8825135	398475	Filoniano	Au	Au	cz - py - cp - cc	Caolinización	Granodiorita	Batol. Huachon	ті	Inactivo
53	Shalipayco	Junin	Ulcumayo	22-1	8799897	393737	Manto	Zn - Pb - Ag	ef - gn	cac - cz	Silicificación	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
54	Shalipayco	Junin	Ulcumayo	22-1	8800515	394551	Manto	Zn - Pb - Ag	ef - gn	cac - cz	Silicificación	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
55	Shalipayco	Junin	Ulcumayo	22-1	8801488	393660	Manto	Zn - Pb - Ag	ef - gn	cac - cz	Silicificación	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
56	Delia	Junin	Ulcumayo	22-1	8801996	392020	Manto	Zn - Pb - Ag	ef - gn	cac - cz	Silicificación	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
57	Puquiopata	Junin	Ulcumayo	22-1	8794135	399335	Manto	Pb - Zn	gn - es	py - cp	Dolomitización	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
58	Curiña	Junin	Ulcumayo	22-1	8794395	398050	Manto	Pb - Zn	gn - es	py - cp	Dolomitización	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
59	Julia	Junin	Ulcumayo	22-1	8787651	425495	Filoniano	Au	Au	py - cz	Filica	Esquisto	Com. Marañon	Pe - cme	Inactivo
60	Animas	Junin	Ulcumayo	22-1	8788020	424692	Filoniano	Au	Au	py - cz	Filica	Esquisto	Com. Marañon	Pe - cme	Inactivo
61	Rancasjasa	Junin	Ulcumayo	22-1	8800010	408710	Filoniano	Au	Au	cz	Epidotización	Granodiorita	Granodiorita	Tr Ji - gd	Inactivo
62	Pacos Hill	Pasco	C° de Pasco	22-k	8836900	355310	Filoniano	Pb - Zn	gn - ef	py - cp - cz	Dolomitización	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
63	El Aguila	Pasco	Cº de Pasco	22-k	8834217	356700	Filoniano	Pb - Zn	gn - ef	py - cp - cz	Dolomitización	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
64	Chunumarca	Junin	Ulcumayo	22-1	8819299	402593	Filoniano	Au	Au	cz - py - cp - cc	Caolinización	Granodiorita	Batol, Huachon	Ti	Inactivo
65	Pishtaj	Junin	Ulcumayo	22-1	8824324	398271	Filoniano	Au	Au	cz - py - cp - cc	Caolinización	Granodiorita	Batol, Huachon	Ti	Inactivo
66	Machahuay	Junin	Ulcumayo	22-1	8823461	391851	Filoniano	Ag - Pb - Zn	gn - ef	cp - py - apy	Silicificación	Filitas	Gpo. Marainiyoc	Pe - e - gn - ma	Inactivo
67	Gallococha	Junin	Ulcumayo	22-1	8821026	400685	Filoniano	Au	Au	cz - py - cp - cc	Caolinización	Granodiorita	Batol. Huachon	Ti	Inactivo
68	Racray	Junin	Ulcumayo	22-1	8816142	393133	Filoniano	Pb - Zn	an - ef	py - cp - cz	Filica	Granito	Granito	TrJi -gr	Inactivo
69	Marcococha	Huanuco	Ambo	21-k	8849501	354617	Brecha pipe	Au	Au	cz - py	Caolinización	Andesitas	Fm. Mitu	Ps	Inactivo
70	Chunquipata	Huanuco	Ambo	21-k	8849908	352718	Filoniano	Ag - Cu	gn - ef - td	cz - py - esb	Argilización	Diorita	Diorita	Kp - di	Inactivo
71	Shuyhua	Junin	Ulcumayo	22-1	8804805	414015	Filoniano	Au	Au	cz - py	Silicificación	Granodiorita	Granodiorita	Tr Ji - gd	Inactivo
72	San Roque	Junin	Oxapampa	22-m	8832325	451595	Manto	Pb - Zn	an - ef	cac - cz	Dolomitización	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
73	Tio Pepe	Junin	Oxapampa	22-m	8827778	452193	Filoniano	Pb - Zn	gn	cz		Calcoarenita	Gpo. Mitu	Ps - m	Inactivo
74	Tama / C° salón	Junin	Ulcumayo	22-1	8800710	431345	Filoniano	Pb - Zn - Cu	gn - ef	cac - cz	Silicificación	Calizas	Gpo. Pucara	Ts - Ji	Inactivo
75	Potrero	Junin	Ulcumayo	22-1	8820320	400710	Filoniano	Au	Au	cz - py - cp - cc	Caolinización	Granodiorita	Batol, Huachon	Ti	Inactivo
76	Socorro	Junin	Ulcumavo	22-1	8819200	400850	Filoniano	Au	Au	cz - py - cp - cc	Caolinización	Granodiorita	Batol, Huachon	Ti	Inactivo

DIRECCION DE GEOLOGIA ECONOMICA Y PROSPECCION MINERA

INVENTARIO DE RECURSOS MINERALES DEL PERU FRANJA 4 - BLOQUE 2

Nº	NOMBRE	8270	но	JA	COORDE	NADAS	SUSTANCIA	DEPOSITO	ROCA CAJA	FORMAC	FORMACION-EDAD	
			_		NORTE	ESTE						
1	Barimayo	Huanuco	Ambo	21-k	8852004	369835	Baritina	Sedimentario	Calizas	Pucara	Ts - Ji	Intermitente
2	Baritina Huariaca	Huanuco	Ambo	21-k	8845844	369802	Baritina	Sedimentario	Arenisca roja	Mitu	Per sup.	Inactiva
3	Asociación	Huanuco	Ambo	21-k	8846003	369371	Yeso	sedimentario	Calizas	Pucara	Ts - Ji	Activa
4	Vinchospunta	Pasco	Cº de Pasco	22-k	8794965	384935	Marmol	Sedimentario	Calizas	Pucara	Ts - Ji	Intermitente
5	Chasquitambo	Pasco	Cº de Pasco	22-k	8798792	377821	Marmol	Sedimentario	Calizas	Pucara	Ts - Ji	Inactiva
6	Km 303	Pasco	Cº de Pasco	22-k	8817601	369962	Arena Cuarzosa	Sedimentario	Arenisca	Goyarisquisga	Ki	Cateo
7	Chinchan	Huanuco	Ambo	21-k	8842976	372014	Travertino	Sedimentario	Calizas	Chambara	Ts - Ji	Inactivo
8	Yescal	Huanuco	Ambo	21-k	8845430	369563	Yeso	Sedimentario	Calizas	Fm. Pucara	Ts - Ji	Activa
9	Yescal 1	Huanuco	Ambo	21-k	8843265	370763	Yeso	Sedimentario	Calizas	Fm. Pucara	Ts - Ji	Activa
10	Goshpi	Pasco	Cº de Pasco	22-k	8805065	374654	Caolín	Sedimentario	Calizas	Fm. Pucara	Ts - Ji	Inactiva
11	Huachon	Pasco	Ulcumayo	22-1	8824530	397046	Talco	Sedimentario	Esquisto	Fm. Maraynioc	Pe-egn-ma	Inactivo
12	Utushpunta	Junin	Ulcumayo	22-1	8783920	404131	Asbesto	Sedimentario	Esquisto	Fm. Maraynioc	Pe-egn-ma	Inactivo