GEOLOGIA DEL CUADRANGULO DE SAN MIGUEL

Hoja: 27-o

Por:

René Marocco
Víctor Lipa
Luis Quispe A.

INGEMMET
Lima - Perú
Noviembre, 1996
GEOLOGIA DEL CUADRANGULO DE SAN MIGUEL

Hojas: 27-o

Por:
René Marocco
Victor Lipa
Luis Quispe A.

INGEMMET

Lima - Perú
Noviembre, 1996
Contenido

RESUMEN ... 1

Capítulo I .. 3
INTRODUCCION ... 3
 1.1. Ubicación y extensión. .. 3
 1.2. Accesibilidad. ... 3
 1.3. Base Topográfica y Fotografías aéreas. ... 5
 1.4. Metodología y Trabajo de Campo. .. 5
 1.5. Estudios Previos. .. 6
 1.6. Agradecimientos. ... 6

Capítulo II ... 9
GEOGRAFIA .. 9
 2.1. Unidades Geográficas. .. 9
 2.1.1. Margen Oriental de la Cordillera Occidental. ... 9
 2.1.2. Depresión Longitudinal-Valle. ... 9
 2.1.3. Estribaciones Occidentales de la Cordillera Oriental. 10
 2.2. Regiones Naturales. ... 10
 2.2.1. Región Puna. ... 10
 2.2.2. Región Suni. ... 10
 2.2.3. Región Quechua. ... 15
 2.2.4. Región Yunga. ... 15
 2.2.5. Región Selva Alta. .. 15
 2.3. Clima ... 16
 Distribución Climática. ... 16
 2.3.1. Clima templado seco de Alta Montaña (ETH). ... 16
 2.3.2. Clima Frío Boreal (DWh). .. 16
 2.3.3. Clima templado moderado lluvioso (Cw). ... 16
 2.3.4. Clima de Selva Tropical. (Aw) .. 16
 2.3.5. Precipitación Pluvial.- .. 19
 2.4. Vegetación. .. 19
 2.4.1. Vegetación en la zona Alta Cordillerana. ... 19
 2.4.2. Vegetación en la zona Intermedia. ... 19
2.4.3. Vegetación en la selva alta. ... 20

2.5. Hidrografía. .. 20
 2.5.1. Cuenca del río Pampas. ... 20
 2.5.2. Cuenca del río Yucaes. ... 20
 2.5.3. Cuenca del río Torobamba. ... 25
 2.5.4. Cuenca del río Apurímac. ... 25
 2.5.5. Lagunas. ... 25

Capítulo III ... 29
GEOMORFOLOGIA .. 29
 3.1. Unidades Geomorfológicas. ... 29
 3.1.1. Superficie Puna. ... 29
 3.1.2. Relieve Montañoso. .. 29
 3.1.3. Depresión Cordillerana. ... 30
 3.1.4. Contrafuerte Occidental de la Cordillera Oriental. 30
 3.1.5. Flanco de Valle disectado. ... 33
 3.1.6. Valles. ... 33
 Valle de Fondo amplio. ... 33
 Valle Cañón. ... 33

Capítulo IV ... 35
ESTRATIGRAFIA ... 35
 4.1. PALEOZOICO ... 37
 4.1.1. PALEOZOICO INFERIOR INDIVISO ... 37
 PALEOZOICO SUPERIOR ... 37
 4.1.2. GRUPOS TARMA-COPACABANA INDIVISOS 37
 DESCRIPCION DE LA SERIE .. 38
 Ambiente de Sedimentacion ... 41
 Edad y Correlacion .. 42
 4.1.3. GRUPO MITU ... 42
 DESCRIPCION DE LA SERIE .. 42
 Edad y Correlacion .. 47
 4.2. MESOZOICO ... 47
 EL MESOZOICO AL SUR DEL SISTEMA DE FALLAS DE SAN MIGUEL-
 OCOBAMBA .. 47
 TRIASICO SUPERIOR-JURASICO ... 47
 4.2.1. GRUPO PUCARA ... 47
 Ambiente de Sedimentacion ... 48
 Edad y Correlacion .. 51
 EL MESOZOICO AL NORTE DEL SISTEMA DE FALLAS DE SAN
6.1.4. LA PARTE SUROCCIDENTAL DE LA HOJA 92
6.2 CRONOLOGIA DE LAS DEFORMACIONES ... 95
6.2.1. CRONOLOGIA DE LOS EVENTOS HERCINICOS 95
6.2.2. CRONOLOGIA DE LOS EVENTOS ANDINOS 96

Capítulo VII .. 101
GEOLOGIA ECONOMICA... 101
Aspectos Generales .. 101
7.1. MINERALES METALICOS. ... 101
7.1.1. Aspectos Geológicos.- .. 102
Rocas Encajonantes.- .. 102
Alteraciones.- .. 102
Mineralización.- ... 102
7.1.2. Principales Ocurrencias de Mineralización en el Area de Estudio.- 102
PROSPECTO CASCABEL.- (Cu,Ag) .. 102
DENUNCIO CULLIONI.- (Ag,Pb,Zn,Cu) .. 103
DENUNCIO OSA MAYOR.- (Ag, Pb, Zn, Cu) .. 104
MINA ANTACORRAL.- (Zn, Pb, Ag, Cu) ... 105
MINA CRUZ MOJO.- (Cu) ... 105
MINA ACAPA.- (Pb, Zn, Cu) .. 106
MINA COMPENJA.- (Zn, Pb, Ag, Cu). .. 107
MINA SENJAN.- (Cu) .. 108
MINA PUNCO.- (Cu,Fe) ... 108
MINA CHAQUIHUAYJO.- (Cu,Fe) .. 109
MINA ICHURUTUNA.- (Zn,Cu,Pb) ... 110
DENUNCIO HAYDEE I.- (Pb,Ag). .. 110
DENUNCIO VIRGEN DE RAPI.- (Ag,Pb,Zn). 111
DENUNCIO MARIO.- (Cu,Pb,Ag). .. 111
DENUNCIO SAN FELIPE DE PUNQUI.- (Pb,Ag). 111
7.2. SUSTANCIAS NO METALICAS.- .. 112
7.2.1. Descripción de las principales Sustancias No Metálicas 112
DEPOSITO JANTAJASA.- (cly) Arcilla. ... 112
DENUNCIO SANTA TERESA.- (Gyp) Yeso 113
7.3. CONSIDERACIONES ECONOMICAS.- ... 113

Capítulo VIII ... 125
GEOLOGIA HISTORICA ... 125

APENDICE PALEONTOLOGICO ... 127

BIBLIOGRAFIA .. 135
La región estudiada (Fig. N°1) está ubicada en la parte Sur del Perú Central, entre los límites Oeste de la Cordillera Oriental y Este de la Cordillera Occidental. Tiene una área de 2,658.98 km², políticamente está comprendida entre los departamentos de Ayacucho, Apurímac y Cuzco.

Desde el punto de vista Geomorfológico, se han delimitado seis unidades: Superficie Puna, Relieve Montañoso, Flanco de Valle disectado, Contrafuerte Occidental de la Cordillera Oriental, Depresión Cordillerana y Valles.

Estratigráficamente la serie del Paleozoico inferior es considerada como basamento en el Cuadrángulo de San Miguel, seguido en el Paleozoico superior por la secuencias pelítico-carbonatadas de los grupos Tarma-Copacabana y las molasas del Grupo Mitu; luego el Triásico-Jurásico que esta representado por depósitos carbonatados del Grupo Pucará; seguido por el Cretáceo conformado por la Formación San Francisco; el Cretáceo superior-Paleógeno por la Formación Ongoy, el Neógeno por la Formación Ayacucho y el Volcánico Lucho Jahuana Pampa; y finalmente el cuaternario con depósitos Morrénicos, aluvionales y depósitos recientes.

Rocas intrusivas del Paleozoico superior y del Paleógeno-Neógeno están representadas en el área de estudio, por cuatro cuerpos principales que son: El granito Paleozoico de Querobamba, situado al Sur, el Plutón granítico situado en el extremo NE del Cuadrángulo; el granito de San Miguel de edad Paleógena y las rocas hipabisales de edad probable Paleógena-Neógena.

En el capítulo de Geología Económica se hace una descripción de las diferentes zonas de interés minero, reconocidas en el área de estudio; y en el capítulo de Geología Histórica se hace una síntesis de los eventos y episodios, tectónicos y estratigráficos del área
El estudio geológico efectuado en el cuadrángulo de San Miguel, ha tenido como finalidad continuar con el levantamiento sistemático de la Carta Nacional a escala 1/100,000, cuya razón fundamental es difundir información geológica básica para promover el desarrollo del país.

1.1. Ubicación y extensión.

El cuadrángulo de San Miguel (27-O), se encuentra ubicado dentro de las siguientes coordenadas geográficas:

- **73° 30’** 74°00’
- **13° 00’** 13°30’

Cubre un área de 2,658.98 km², comprendida entre los departamentos de Ayacucho, Apurímac y Cuzco (Fig.nº1).

1.2. Accesibilidad.

El acceso a la zona de estudio se efectúa por vía terrestre y aérea:

- La vía terrestre parte de un desvío de la Panamericana Sur a la altura de la localidad San Vicente (Próximo a la ciudad de Pisco), esta carretera es denominada «Vía Los Libertadores», y atraviesa las localidades de Huaytara, Pilpichaca, etc., llegando finalmente a la ciudad de Ayacucho, capital del departamento del mismo nombre.

A partir de Ayacucho el acceso al cuadrángulo de San Miguel se puede efectuar por dos rutas:

- La primera ruta que ingresa al sector Norte del cuadrángulo comunica las localidades de Ayacucho, Quinua, Pacaycas, Tambo, San Miguel, Hda. Ninabamba, Sacharajay y Chiquintirca.
- La segunda ruta ingresa al sector Sur del cuadrángulo desde Ayacucho pasando por las localidades de Paccha-Ocros-Pte. Pampas, continuando su recorrido rumbo a la Provincia de Andahuaylas.

A partir de estas dos rutas principales existen accesos de corto recorrido que comunican a los diferentes caseríos de la zona.

1.3. Base Topográfica y Fotografías aéreas.

La base topográfica empleada en la zona de estudio ha sido el mapa fotogramétrico (27-O), a escala 1/100,000, editado por el Instituto Geográfico Nacional IGN.

Las fotografías aéreas usadas para el cartografiado geológico fueron del tipo USAF, a escala aprox. 1/40,000, que recubren gran parte el área del cuadrángulo; El extremo NE que hasta antes de 1995 carecía de cobertura aéfotográfica, actualmente esta cubierto por vuelos recientes (Proyecto STAMP-IGN).

Como material adicional ilustrativo complementario se contó con imágenes de Radar controlado (SLAR) a escala 1/100,000, Mapa planimétrico de imagen de Satélite a escala 1/250,000 (Hoja SD 18-7) con bandas 4, 5 y 7, que recubren ampliamente la parte norte del departamento de Ayacucho (Fig. nº2); Posteriormente el INGEMMET adquirió cintas digitales de Imágenes de Satélite Landsat TM, a partir de la cual se obtuvieron imágenes impresas en papel con la combinación de bandas 7, 4, 2 y banda sola 5.

1.4. Metodología y Trabajo de Campo.

El método de trabajo es el tradicional, consistente en hacer un estudio fotogeológico en base a la información disponible, estableciendo puntos de control (datos geológicos) directamente sobre fotografías aéreas e imágenes satelitales y a la vez identificar algunas estructuras tales, como fallas, contactos litológicos, buzamientos, etc.; Luego toda esta información es transportada a un mapa fotogramétrico, con la finalidad de ir ensamblando sucesivamente el mapa fotogeológico.

En la elaboración del mapa geológico de San Miguel, iniciado en el año 1975 se realizó un periodo de campo de 30 días, donde la accesibilidad vehicular a las diferentes zonas del cuadrángulo en ese tiempo fue limitada, por lo que gran parte del recorrido tuvo que efectuarse tanto a pie, como a lomo de acémila, obteniendo valiosa información que permitió obtener un mapa geológico preliminar; Luego debido a motivos presupuestales y de seguridad no se pudo continuar con el trabajo de campo, deteniéndose su estudio. Posteriormente en el año 1996 se efectuó una campaña de campo de 30 días para la actualización y
supervisión del cuadrángulo, siendo acompañado en esta ocasión por los geólogos Luis Quispe Aranda y Víctor Lipa Salas, ambos del INGEMMET e igualmente por el estudiante Darwin Romero de la UNSAAC. Se visitaron algunas zonas no recorridas anteriormente, habiéndose realizado un través por el extremo NE del cuadrángulo a partir del poblado de Punqui en dirección al río Apurímac, el cual permitió obtener la información geológica requerida.

1.5. Estudios Previos.

Se tienen escasos reportes de estudios geológicos efectuados en el cuadrángulo de San Miguel, uno de ellos es el de los geólogos L. Guillermo Morales y Adolfo Ocampo quienes realizaron un estudio titulado “GEOLOGÍA GENERAL Y ESTRATIGRÁFICA DE LA PROVINCIA DE ANDAHUAYLAS Y APURIMAC” en el año 1956, el mismo que abarca parte del extremo SE del área de interés. Otro trabajo de investigación de carácter regional es el realizado por Marocco en el año 1977, el cual se titula “GEOLOGIE DES ANDES PERUVIENNES - UN SEGMENT E.W. DE LA CHAINE DES ANDES PERUVIENNES: LA DEFLEXION D’ ABANCAY- ETUDE GEOLOGIQUE DE LA CORDILLERE ORIENTALE ET DES HAUTS PLATEAUX ENTRE CUZCO ET SAN MIGUEL (Sud du Perou 12°30’ S a 14°00’ S). Este estudio trata de la descripción estratigráfica regional y tectónico en el Sur del Perú, el cual comprende a los cuadrángulos de: San Miguel, hoja 27-p, Santa Teresa, Urubamba, Calca, Andahuaylas, Abancay, Tambobamba, entre otras.

1.6. Agradecimientos.

Deseo expresar mi reconocimiento a los directivos del Instituto Geológico Minero y Metalúrgico INGEMMET, por la confianza depositada en mi persona para la ejecución del presente estudio.

Mi agradecimiento al geólogo Luis Quispe Aranda, quien tuvo a su cargo la evaluación de las áreas de interés económico.

Agradezco también a los geólogos Víctor Lipa Salas y Darwin Romero, quienes han colaborado eficientemente durante los trabajos de campo así como de gabinete en la preparación del informe.

Al departamento de paleontología en la persona de la Br. María del Carmen Morales por su colaboración en la elaboración del apéndice paleontológico.
MAPA PLANIMETRICO DE IMAGEN DE SATELITE LANDSAT (MSS)

Bandas 4, 5 y 7
CUADRANULO DE SAN MIGUEL (27 - O)
Escala Aproximada 1:400,000

Fig. N° 2
Capítulo II

GEOGRAFIA

Geográficamente el área estudiada está comprendida dentro de los límites de la Cordillera Occidental y Cordillera Oriental, en la parte Central Sur del Perú.

2.1. Unidades Geográficas.

Se han determinado tres unidades geográficas en la zona, las que son denominadas como: Margen Oriental de la Cordillera Occidental; Depresión longitudinal-Valle y estribaciones occidentales de la Cordillera Oriental (Fig.n°3).

2.1.1. Margen Oriental de la Cordillera Occidental.

Situada al Oeste de la Zona de interés, ocupa el 60% del área del cuadrangulo.

El relieve en esta unidad está conformado por cerros elevados, cuya mayor altitud alcanza los 4,362msnm. Esta unidad se muestra fuertemente disectada por numerosas quebradas y principalmente por el río Pampas, el mismo que limita a los departamentos de Ayacucho y Apurímac.

2.1.2. Depresión Longitudinal-Valle.

Unidad geográfica que limita a la Cordillera Occidental de la Cordillera Oriental, manteniendo una orientación NO-SE y que esta conformada en un tramo por los valles de los ríos Torobamba y Pampas.

Longitudinalmente esta depresión tiene un gran desnivel de aproximadamente 1,200 m., observable desde el poblado de San Miguel hasta la hacienda Dichus al SE del área de estudio. Esta gran diferencia de cotas indican un desnivel de fuerte pendiente por donde discurren los ríos arriba mencionados.

El río Pampas en su tramo inicial al Sur del cuadrángulo de San Miguel conforma un amplio Valle con dirección SO-NE, que secciona diagonalmente el relieve cordillerano Occidental hasta su unión, con el río Torobamba.
2.1.3. Estribaciones Occidentales de la Cordillera Oriental.

Situada al NE del área de estudio ocupa el 40% restante del cuadrángulo. La alineación de cumbres en esta unidad constituyen la divisoria natural de aguas que drenan a las cuencas de los ríos Torobamba-Pampas y Apurímac respectivamente. A partir de esta divisoria, en el lado occidental el relieve se muestra seccionado por riachuelos y numerosas quebradas subparalelas que desembocan a los ríos arriba mencionados; En el lado Oriental la superficie conformada por cerros elevados está fuertemente disectada, dando origen a numerosas quebradas y cauces de ríos que desembocan al río Apurímac.

2.2. Regiones Naturales.

En el cuadrángulo de San Miguel se han reconocido seis regiones naturales, las cuales son inherentes a la diferencia de cotas en el terreno. Cada región natural presenta características peculiares como clima, relieve, flora y fauna (Fig.n°4).

2.2.1. Región Puna.

Conforma topográficamente la parte más alta del área de estudio, con altitudes que varían de 4,000 a 4,800 m.s.n.m..

En el sector Oeste del cuadrángulo, el relieve delimitado de esta región se muestra a manera de lomadas y colinas con pendientes suaves y ocasionalmente presencia de lagunas, como las de Yanacocha, Huaytacocha, etc.; En el extremo SE, hacia las zonas altas de Ongoy el relieve es accidentado, con crestas escarpadas, quebradas con depósitos morrénicos, y la presencia de lagunas como las de Azulcocha, Patacocha, etc., al NE del cuadrángulo, en las zonas altas de Chinquintirca y Chungí.

2.2.2. Región Suni.

Las altitudes en esta región van de 3,500 a 4,000 m.s.n.m..

La región Suni en el área de estudio generalmente está limitada por flancos de las cadenas cordilleranas, cuyas laderas progresivamente van descendiendo en altura a partir de las zonas de mayor cota (Región Puna); Morfológicamente presentan un relieve disectado por riachuelos y quebradas subparalelas perpendiculares a sus colectores principales, también presencia de lagunas.
Geología del Cuadrángulo de San Miguel
En esta región se localizan los poblados de Chilcas, Pampas, Ocros en el sector Oeste del cuadrángulo y Chungi, Punqui al NE.

2.2.3. Región Quechua.

Comprendida entre los 2,300 a 3,500 m.s.n.m.

En la zona de estudio la región Quechua, topográficamente está restringida a las partes bajas de pendientes que descienden de las zonas altas cordilleranas; Su relieve es similar a la región anterior, pero con al diferencia que los flancos de las quebradas se hacen más empinados hasta su desembocadura en los ríos Torobamba-Pampas.

Las localidades de San Miguel, Ongoy, Ocobamba, entre otras estarían situadas en esta región. En el extremo NE del cuadrángulo se puede reconocer también esta región luego de pasar, las cumbres cordilleranas y descendiendo en dirección a la localidad de Chiquintirca también es reconocida esta región.

2.2.4. Región Yunga.

La altitud de esta región va de 1,000 a 2,300 m.s.n.m.

El relieve en la región está controlado en gran parte por el valle del río Pampas, la parte baja del río Torobamba y quebradas próximas. El desarrollo de la actividad agrícola es mayor que con respecto a otras regiones, estando restringida en gran parte a terrazas fluviales formadas en los fondos de los valles.

Numerosos son los poblados y/o haciendas que se ubican en esta región, entre ellos tenemos Generosa, Hda. Ninabamba, Huacjrauilca, Hda. Janchis, Hda. Pichu, etc.

2.2.5. Región Selva Alta.

Para esta parte del territorio la selva alta se encuentra por debajo de los 3,000 m.s.n.m., reconociéndose en el extremo NE del cuadrángulo de San Miguel.

El relieve en esta región se halla conformado por numerosas quebradas estrechas y profundas, cerros empinados que progresivamente van disminuyendo en cota en dirección al río Apurímac.

La flora y fauna en esta región es variada y abundante, como se observó en el trayecto del poblado Punquí al Puerto Agua dulce, situado en la ribera del río Apurímac.
2.3. Clima.

El cuadrángulo de San Miguel tiene una diversidad de climas que tendría como factores determinantes: Su posición geográfica y su relieve, marcando una diferencia climática imperante que varía desde un clima frígido hasta un clima semitropical lluvioso (Fig.n°5).

Distribución Climática.

2.3.1. **Clima templado seco de Alta Montaña (ETH).**

El clima en esta zona se muestra frígido, donde la temperatura media en el mes más cálido es superior a 0°C; Este clima es detectado generalmente en las serranías de Ocros, Pampas, Chilcas, Oeste de San Miguel, zonas altas de Ongoy; en el extremo NE del cuadrángulo se le reconoce en las zonas altas de Chiquintirca, Chungi, etc.

2.3.2. **Clima Frío Boreal (DWb).**

En invierno el clima en este sector muestra sequedad y con una temperatura media superior a 10°C por lo menos durante cuatro meses al año; Este clima se presenta al Oeste del cuadrángulo, en las localidades de Pataramoco, Hda. Matara, Ocros, Pampas, Chilcas; al Sur en las alturas de Huancana, Ongoy y al Este en Chungi, Chiquintirca entre otros poblados.

2.3.3. **Clima templado moderado lluvioso (Cw).**

Este clima se muestra con un invierno seco donde la cantidad de agua del mes más lluvioso es 10 veces mayor que el mes más seco.

El clima templado y seco es reconocido al Oeste y parte central del cuadrángulo, en las localidades de Hda. Quinuas, Valles del río Torobamba, Pampas, localidades de Ongoy, Ocobamba; Al NE en dirección al río Apurimac, el clima se torna igualmente templado y ligeramente húmedo, con lloviznas esporádicas.

2.3.4. **Clima de Selva Tropical. (Aw)**

En esta zona el clima difiere notoriamente con respecto a otros climas reconocidos; Aquí la humedad es permanente y la temperatura media de todos los meses es superior a 18°C. Las precipitaciones anuales son superiores a 750 mm.
Este tipo de clima se reconoce en el extremo NE del área de estudio, desde proximidades de Patahuasi camino al río Apurímac (Pto. Agua dulce).

2.3.5. Precipitación Pluvial.

Según información generalizada a partir de datos referenciales de pobladores del lugar, las precipitaciones en la región están controladas por regímenes estacionales, pudiendo resumirse en la forma siguiente:

- De Abril a Agosto en las partes altas cordilleranas ausencia de lluvias, siendo común las heladas.

- De diciembre a Marzo presencia de lluvias, lo cual trae consigo incremento del caudal en los ríos dando mayor humedad.

En el extremo NE, en la zona de Selva las precipitaciones pluviales son intensas, siendo los ríos mas torrentosos.

2.4. Vegetación.

Los diversos tipos de climas y formas de relieve en el cuadrángulo de San Miguel, implican una variedad y proporción de especies vegetales. En función a estos parámetros se ha delimitado tres zonas.

2.4.1. Vegetación en la zona Alta Cordillerana.

En esta zona se considera a terrenos de la región Puna y Suni, donde la vegetación es relativamente exigua y carente de especies vegetales, teniendo como factor determinante la altura; La vegetación de la zona está conformada por el Ichu, pastos naturales, árboles como el Eucalipto, el Quinual, etc. y como plantas de cultivo la papa, maíz, haba, olluco, etc.

2.4.2. Vegetación en la zona Intermedia.

Se considera en esta zona a la región Quechua, donde la vegetación es de mayor variedad en especies. Como árboles tenemos el eucalipto, aliso, molle, unca, chachas; en arbustos la retama, cabuya, taya, etc.; y en cultivos de pan llevar; el maíz, el trigo, las menestras, asimismo en frutales la naranja, limón, chirimoya, plátano, palta, etc.
2.4.3. Vegetación en la selva alta.

La vegetación en esta zona es abundante y variadísima, propia de las zonas tropicales. El desarrollo de la flora en este ambiente es abundante, lo cual es favorecido por el clima y la humedad permanente que incrementa el desarrollo vegetal.

Entre los árboles se tiene ocasionalmente el tornillo, cedro y otros que son conocidos. Como plantas de cultivo se tiene principalmente la yuca, el plátano, la naranja, el maní, el cacao, etc. así como frutales.

2.5. Hidrografía.

Las escorrentías superficiales que drenan son el cuadrángulo de San Miguel están controladas por cuatro colectores principales, ellos son los ríos: Pampas, Yucaes, Torobamba y el río Apurímac que constituye el colector principal, a donde finalmente van a drenar sus caudales los tres primeros ríos, Este río pertenece al sistema hidrográfico de la cuenca del Atlántico (Fig. N°6).

2.5.1. Cuenca del río Pampas.

Este río abarca la parte central del área de estudio, siendo considerado como el principal colector de gran parte de las escorrentías superficiales del cuadrángulo.

El río Pampas recorre la zona en su tramo inicial de Sur a Norte, donde en su margen derecha recibe el caudal del río Pulcay (Foto N°1) y en su margen izquierda a los ríos: Jajamarca, Lacolla, Cullay y Torobamba, a partir de la cual el río toma la dirección a NO-SE, recibiendo en su margen izquierda a los ríos Ancomayo, Chungi, Palljasmayo y en su margen derecha al río Chacabamba.

El río Pampas posee un caudal considerable, discurriendo en general por un amplio valle de pendiente suave y de fondo plano conformado por amplias terrazas, donde eventualmente en ciertos sectores se desarrollan actividades agrícolas.

2.5.2. Cuenca del río Yucaes.

Situada en la margen Oeste del área de estudio, y mejor representado en el cuadrángulo de Ayacucho; La escasa exposición del lecho del río Yucaes en este margen, estaría marcando su inicio, el cual surge a raíz de una agrupación de numerosas quebradas como: Ventanillayoc, Johuisha, Tallana, Ticonca, Tantarnioc, etc. que convergerían a uno principal que conformaría posteriormente el cauce del río Yucaes.

Foto N° 1a. Vista del valle del río Torobamba, tomada en dirección al Noroeste.
2.5.3. Cuenca del río Torobamba.

La cuenca del río Torobamba se sitúa al NO del cuadrángulo de San Miguel. ver (Foto N°1a). Este río es un afluente del río Pampas manteniendo una orientación cuyo recorrido es NO a SE, recibiendo en su margen derecha a los ríos Condoray, Molinohuayjo y otras quebradas anexas; Su caudal discurre por un cauce inicialmente de fondo relativamente amplio hasta la intersección del río Molinohuayjo, a partir de donde el río drena por un cauce estrecho, con perfil de fuerte pendiente, hasta su desembocadura al río Pampas.

La actividad agrícola se desarrolla a lo largo de este río, así como en zonas aledañas.

2.5.4. Cuenca del río Apurímac.

Esta cuenca está situada en el extremo NE del área de estudio, el río tiene un recorrido de SE a NO, recibiendo en su margen izquierda los caudales de los ríos Alforpampa, Pichi, Huarccamayo y tributarios menores; los que son observados en otras latitudes. El gran caudal del río Apurímac discurre por un amplio cauce con perfil de escasa pendiente, donde ocasionalmente se forman meandros y terrazas fluviales.

En ambas márgenes de este río se desarrollan actividades agrícolas, donde se cultiva principalmente el cacao, maní, yuca y frutales en general.

2.5.5. Lagunas.

Estas lagunas se sitúan en las zonas altas cordilleranas y se habrían formado en periodos post-pleistocénicos, como consecuencia de una etapa de desglaciación habiéndose entrampado hielo en depósitos fluviglaciares; Entre las principales lagunas se tendrían: Quellococha y Parlana Cocha situadas al Oeste del cuadrángulo, Pichihuilca al NE, Azulcocha y Anuri al Sur (Foto N° 2).
Foto Nº 2. Laguna Arruri, situada al NO del poblado de Huaccana.

Foto Nº 2a. Vista de un valle glaciar en forma de "U" en la Quebrada Suyoruyoc, al Suroeste de Chongoy.
El modelado superficial del cuadrángulo de San Miguel es la resultante de fenómenos geodinámicos, erosión y transporte, etc., los cuales han contribuido a la actual configuración de su relieve. En base a criterios geográficos, morfoestructurales y litológicos se han delimitado siete unidades geomorfológicas (Fig. N°7).

3.1. Unidades Geomorfológicas.

3.1.1. Superficie Puna.

Unidad geomorfológica delimitada al Oeste y Sur del cuadrángulo de San Miguel.

Esta unidad dentro del área de estudio está referida a terrenos topográficamente de mayor cota. Hacia el oeste el relieve se muestra a manera de colinas de pendiente suave y eventualmente altiplanicies con lagunas distribuidas esporádicamente; y hacia el Sur el modelado superficial denota crestas escarpadas, quebradas estrechas, valles en U y morrenas (ver Foto N°2a).

Litológicamente la unidad está comprendida por los grupos Tarma-Copacabana, Mitu, Volcánico Lucho Jahuana Pampa y Complejo Querobamba.

La erosión es moderada, estando inicialmente controlada por la acción glacial en periodos pasados y erosión pluvial principalmente en la actualidad.

3.1.2. Relieve Montañoso.

Esta unidad delimita al NE del área de estudio, es coincidente geográficamente con parte de la selva alta e hidrográficamente cruzada por ríos y quebradas que drenan hacia la cuenca del río Apurímac.
Litológicamente esta unidad geomorfológica comprendería a series del paleozoico inferior, grupos Tarma-Copacabana, y a un intrusivo granítico ampliamente distribuido.

El grado de erosión es marcado, siendo la acción pluvial y fluvial los principales agentes activos.

3.1.3. Depresión Cordillerana.

Estas depresiones están situadas en las estribaciones orientales de la Cordillera Occidental al Oeste y Sur del cuadrángulo de San Miguel.

La depresión situada en la margen Oeste del área de estudio, corresponde a la parte mas distal de la gran depresión de Ayacucho, litológicamente desarrollada sobre una superficie pre-volcánica y posteriormente cubierta por derrames efusivos; En esta geoforma se sitúan algunas haciendas tales como la Hacienda Matará, la Hacienda Quinuas, etc.; En la depresión situada al Sur, se sitúan las localidades de Huancana, Ongoy y otras. Morfológicamente se presenta a manera de una hondonada semicircular, cuyos drenajes centrípetos convergen a uno principal denominado río Chacabamba.

Litológicamente esta geoforma se desarrollaría en unidades del Grupo Mitu, formaciones San Francisco, Ongoy, Ayacucho y el Volcánico Lucho Jahuana Pampa.

3.1.4. Contrafuerte Occidental de la Cordillera Oriental.

Unidad situada al Norte del cuadrángulo; geográficamente constituye la margen occidental de la Cordillera Oriental.

Geomorfológicamente esta unidad se presenta a manera de una ramificación paralela a la cadena montañosa de orientación NO-SE; su geoforma denota fuerte pendiente, con un relieve que se muestra transversal e intensamente disectado por ríos y numerosas quebradas de orientación NE-SO.

A lo largo de su extensión la unidad comprende a diversas unidades litológicas, tales como Grupos Tarma-Copacabana, Mitu y la Formación Ongoy.

El grado de erosión es marcado siendo controlado principalmente por la acción pluvio-fluvial que profundizan las quebradas desarrolladas las que finalmente van a converger a los ríos Torobamba y Pampas.
3.1.5. Flanco de Valle disectado.

Esta unidad ocupa gran parte del área de estudio estando limitada a los flancos de los Valles del río Torobamba y Pampas.

Su relieve muestra gran disecación, conformada por numerosos ríos y quebradas que lo cruzan, los que finalmente desembocarían en los ríos anteriormente mencionados. En general su relieve se torna accidentado con prominencias y depresiones longitudinales sucesivas.

Litológicamente los grupos Tarma-Copacabana, Mitu, Complejo Querobamba y Formación Ongoy son las unidades involucradas en la formación de esta geoforma.

La erosión en la unidad geomorfológica es progresiva, siendo la acción fluvial el agente activo, también actúan los fenómenos eólicos, geodinámicos, etc.

3.1.6. Valles.

Son depresiones longitudinales, producto de una permanente erosión fluvial de los terrenos. De acuerdo con el grado de su evolución se les ha subdividido en dos tipos:

Valle de Fondo amplio.

Unidad que comprende parte del Valle del río Pampas, cuya dirección predominante es N-S hasta su unión con el valle del río Torobamba.

Este tipo de geoforma es el resultado de un permanente y progresivo proceso de erosión el que ha dado lugar a un socavamiento y profundización del Valle por donde discurre el río Pampas, desarrollando cierta sinuosidad en su curso y bisectando indiferentemente las terrazas formadas a ambos lados del río.

Litológicamente el valle atraviesa en gran parte por las series de los Grupos Tarma-Copacabana, Mitu y del complejo Querobamba y depósitos cuaternarios holocenos.

Valle Cañón.

Son valles estrechos, relativamente profundos y de flancos empinados que se han desarrollado en la parte baja del río Torobamba y en un tramo del río Pampas; habiendo sido labradas sobre unidades de los Grupos Tarma-Copacabana, Mitu y depósitos recientes.

El grado de erosión es marcado siendo controlado por la acción fluvial y la pendiente del terreno.
Capítulo IV

ESTRATIGRAFIA

La serie estratigráfica del cuadrángulo de San Miguel va desde el Paleozoico inferior representado solamente en el extremo NE de la hoja, (vertiente sur del valle del río Apurímac), hasta el cuaternario reciente (Fig 8). Las grandes discontinuidades estratigráficas-discordancias angulares regionales y/o fases eustáticas importantes, conocidas en el Sur del Perú están representadas en este cuadrángulo, así entonces se puede definir cuatro etapas estratigráficas mayores:

El Mesozoico (del Triásico superior al Cretáceo superior) es más complejo. Su litología y organización formacional no es la misma de uno y otro lado del gran sistema de fallas NW-SE que van desde San Miguel a Ocobamba. Al SW de dicha zona de fallas, la serie estratigráfica es similar a la descrita en la región de las Planicies Altas del Perú Centro-Sur (Pecho,1981, Marocco,1975). Al NE de la mencionada zona, la serie mesozoica es similar a la descrita en Cuzco (Jaillard et al. 1994).

El Cretáceo terminal-Neógeno en el cuadrángulo de San Miguel corresponde al desarrollo de pequeñas cuencas continentales fluviales (capas rojas) controladas por la actividad tectónica. Durante el Neógeno, una intensa actividad volcánica da lugar a una potente serie de lavas y piroclástos.

Durante el cuaternario y posiblemente ya desde el Neógeno superior la erosión glacial, meteórica y fluvial controla la formación y la sedimentación de abundantes depósitos morrénicos, eluviales y aluviales.

La figura 8A ilustra las dos series estratigráficas del cuadrángulo de San Miguel.
COLUMNAS ESTRATIGRÁFICAS DEL SECTOR SW Y NE DEL CUADRÁNGULO DE SAN MIGUEL

Fig N° 8 A
4.1. PALEOZOICO

4.1.1. PALEOZOICO INFERIOR INDIVISO

Las rocas atribuidas al Paleozoico inferior afloran exclusivamente en la esquina NE de la hoja, donde se encuentran en contacto por falla inversa con el Paleozoico superior. Las dificultades de acceso, la falta de cobertura topográfica y la escasez de fotografías aéreas han dificultado el estudio de esta parte del Cuadrángulo de San Miguel. En la única travesía de esta zona desde Punqui hasta el río Apurímac, efectuada por el Ing° Victor Lipa y D. Monteros, se encontró rocas del Paleozoico inferior en las cercanías de la localidad de Patahuasi. Los afloramientos están alterados por la fuerte intemperización debida al clima tropical y la abundancia de vegetación.

Las rocas atribuidas al Paleozoico inferior consisten de pizarras fuertemente esquistosas que presentan varias fases de deformación. La muestra (SM-50) recolectada en el punto de coordenadas UTM N8565.9/E 661.9 (NE de la hoja), corresponde a un esquisto cuarzo-feldespático, lo que indica que la serie ha sufrido un metamorfismo general llegando al grado de «esquistos verdes»

No se encontraron fósiles, por lo que no se puede determinar la posición estratigráfica de los terrenos del Paleozoico inferior aflorantes en la hoja de San Miguel. Por comparación con las regiones situadas más al SE y al NW, podemos correlacionar dichos terrenos con la serie Ordovíciana-Devónica de la región de Cuzco (Marocco, 1980, Dalmayrac et al., 1980) y con el Grupo Excélsior del Perú Central (Mégard, 1978). El metamorfismo presentado por la serie en la hoja de San Miguel es coherente con el estado metamórfico del Paleozoico inferior en la Cordillera de Vilcabamba (Marocco, 1978), metamorfismo que es contemporáneo con la tectónica eohercínica del Carbonífero inferior.

PALEOZOICO SUPERIOR

Las series del Paleozoico superior están bien representadas en el cuadrángulo de San Miguel donde sus afloramientos representan más del 50% de la superficie de la hoja. Dos unidades constituyen el Paleozoico superior: El Grupo Tarma-Copacabana del Carbonífero-Permiano inferior indiviso y el Grupo Mitu del Permiano superior-Triásico inferior.

4.1.2. GRUPOS TARMA-COPACABANA INDIVISOS

En la hoja de San Miguel describimos como Grupo Tarma-Copacabana indiviso a una potente serie (probablemente más de dos mil metros) de lutitas negras y calizas, cuyo principal afloramiento se encuentra al NE de la línea San Miguel-Ocobamba (cuadrante NE
de la hoja) Otros afloramientos aparecen en el Sur de la hoja, en la zona del río Pampas así como en el borde Nororiental del macizo granítico de Querobamba.

En la hoja de San Miguel no se han podido reconocer ni diferenciar los tres grupos formacionales clásicos del Carbonífero superior-Permiano inferior reconocidos por Newell, N. et al, 1953 y que son:

El Grupo Copacabana (Permiano inferior), esencialmente calcáreo,

El Grupo Tarma (Carbonífero superior), en gran parte lutáceo, con calizas en menor proporción.

El Grupo Ambo (Carbonífero inferior a medio), compuesto por sedimentos detríticos.

Estos grupos han sido descritos en el centro y Sur del Perú por Newell et al, 1953 y entre otros autores por Laubacher, 1978, Marocco, 1978, Dalmayrac et al., 1980, Mégard, 1978. De ellos solo aflora una potente serie monótona conformada por una alternancia de lutitas negras y de calizas gris oscuro. Ninguna diferenciación formacional ha sido posible y nunca se ve la base de la serie la que está en contacto fallado con las rocas más antiguas del Paleozoico inferior. Es por esta razón que describiremos dicha serie bajo el nombre de «Grupo Tarma-Copacabana indiviso». Solo un mapeo muy preciso acompañado de una búsqueda y determinación sistemática de fósiles podría permitir establecer divisiones cartografiables en este grupo. El poco tiempo dedicado al levantamiento de la hoja no ha permitido realizar estas divisiones. Solo hemos podido diferenciar en ciertas zonas visitadas detenidamente (alrededores de Chinquitirca y de Punqui) las calizas de las lutitas. Esta diferenciación no se puede hacer con fotointerpretación debido al fuerte endurecimiento sufrido por las lutitas que las hace tan duras como las calizas de las cuales tienen el mismo aspecto topográfico.

Descripción de la serie

Lo que más destaca cuando se observa el conjunto de la serie es su homogeneidad topográfica, a tal punto que en muchos lugares, parece estar compuesta del mismo tipo de roca. En realidad los dos tipos litológicos incluyen lutitas negras, tal como se puede observar en la foto n°3 en la que se muestra una alternancia de calizas oscuras con bancos de lutitas las que se hacen menos arenosas según los lugares y sin embargo el estado de litificación de las lutitas es tal que son tan duras como las calizas por lo que los dos tipos litológicos tienen la misma respuesta a la erosión.

El Grupo Tarma-Copacabana indiviso está conformado por secuencias sedimentarias de 100 a 200 metros de potencia de las cuales; las dos terceras partes inferiores corresponden a lutitas y el tercio superior a calizas. Son secuencias estrato crecientes y granocrecientes.

Foto Nº 4. Lavas Mitu con paleocanales arcillosos (cerro Chupuran).
Las calizas se presentan generalmente en bancos pequeños (20 a 50 cm.), muy oscu-
ras, micríticas, con alteración gris oscuro a gris claro. Presentan muy a menudo estructuras típicas de ambiente inter a infratidal: wavy-bedding, flaser-bedding y ondulitas con dos direc-
ciones de corrientes. Ciertos niveles muestran laminaciones algales que indican un ambiente supratidal. Los niveles de ambiente tidal muestran laminaciones centimétricas de calizas mudstone y de calizas grainstone; los niveles de grano grueso están frecuentemente dolomitizados y sobresalen por estar menos afectados por la disolución kárstica (foto n°5). Buenos ejemplos de este fenómeno, bastante común en ambiente carbonatado, se pueden ver en la carretera Chincheros-Huajana, donde la serie está en contacto con el intrusivo de Querobamba (sur de la hoja), así como en la carretera Sacharajay-Chinquiritirca, donde un kilómetro después de Sacharajay, se observan grandes bloques caídos de los cerros circun-
dantes.

Las lutitas son negras y de alteración gris claro a gris oscuro. siendo muy duras debido a su intensa litificación y la que localmente presentan una silicificación por metamorfismo de contacto. Son de ambiente sedimentario de más profundidad que las calizas, posiblemente de plataforma marina y de mediana profundidad (algunas decenas de metros como máximo).

Las secuencias conformadas por la serie calcaréa-dolomítica corresponden a etapas de colmatación que se materializan con la progradación de las zonas tidales sobre lutitas de las zonas más profundas de la cuenca. El restablecimiento periódico de las condiciones de profundidad deben estar relacionados con la subsidencia más que a fenómenos transgresivos sucesivos.

El metamorfismo de contacto puede ser muy intenso en ciertas zonas, donde las calizas y lutitas del Grupo Tarma-Copacabana indiviso están intruídas por el Granito Rojo de Querobamba (sur de la hoja) o por el Granito de Pichihuilca (NE de la hoja).

En ciertas zonas es a menudo difícil encontrar el buzamiento de las capas, las que se confunden con la esquistocidad de fractura paralela al plano axial de los pliegues.

Ambiente de Sedimentación

Las rocas del Grupo Tarma-Copacabana indiviso se han depositado en un ambiente de plataforma carbonatada. Dicha plataforma se extendía por el borde del continente de Gondwana, cubriendo una gran superficie ocupada actualmente por los territorios de Perú, Bolivia y Este de Brasil. Las facies representadas en la hoja de San Miguel corresponden a una parte relativamente proximal de la plataforma. No se han reconocido facies profundas de tipo plataforma distal o talud.
Edad y Correlación

No se encontraron fósiles diagnósticos, excepto en el extremo sur de la hoja (Cerro Infiernioca, coord. UTM 627x8512), cerca al Puente Pampas, donde los últimos bancos de calizas que infrayacen a los sedimentos rojos del Grupo Mitu, contienen una rica fauna de Spiriférios, de briozoarios y de grandes fusulinas. Dentro de estos fósiles, Morales, M., en el laboratorio de INGEMMET determinó Neospirifer condor (D'ORBIGNY) del Carbonífero superior-Permiano inferior, muy común en el Grupo Copacabana (Newell et al., 1953).

El Grupo Tarma-Copacabana indiviso de la hoja de San Miguel se correlaciona con los grupos Tarma y Copacabana descritos por Newell et al. (1953) en regiones vecinas (por ejemplo en las zonas de Abancay y Andahuaylas). Por lo que le atribuimos una edad que va del Carbonífero superior al Permiano inferior.

4.1.3. GRUPO MITU

McLaughlin (1924) describió bajo el nombre de Grupo Mitu, en las cercanías de un pueblo del mismo nombre en los Andes centrales, a un conjunto de rocas volcánicas abigarradas. En el cuadrángulo de San Miguel el Grupo Mitu está representado por una serie compuesta por rocas volcánicas y en menor proporción por rocas sedimentarias.

Descripción de la Serie

Las rocas volcánicas son de color rojizo, gris y negro. En ciertos lugares se trata de lavas típicas tal como se observa en el Cerro Chiuspiuran, a lo largo de la carretera que va de San Miguel a Chiquintirca, en la orilla izquierda del río Torobamba (UTM 622x8554). En esta zona, las rocas son esencialmente riolíticas (muestra SM-05) con fenocristales de cuarzo y de feldespatos potásicos. También se han reconocido bancos potentes (2 a 3 m.) de ignimbritas muy duras con estructuras en llama las que dan a la roca un aspecto bandeado. Entre los derrames es común encontrar arcillas rojas, testigos de paleosuelos e intercalaciones de areniscas y arcillas fluvio-lacustres también de color rojo que contienen gasterópodos (UTM 621.064x8551.581) (foto 4).

En otros lugares, como por ejemplo en el sur de la hoja, no se pueden reconocer buzamientos debido a que se trata de derrames volcánicos macivos, pudiendo ser también intrusiones hipovolcánicas correspondientes a las zonas profundas de los centros de emisión del volcánico Mitu. En este caso, la serie no se debe comportar como una capa estratigráfica pero sí como una intrusión; en otras palabras, de comprobarse que se trata efectivamente de intrusiones, no deberíamos encontrar por debajo de la serie remanentes de rocas sedimentarias más antiguas. En las dos secciones estructurales AA' y BB' del cuadrángulo de San Miguel,
Foto N° 5 Vista de tidalitas calcáreas. (Nótese las finas laminaciones así como las bandas más duras que son niveles de grano más grueso dolomitizados).
Fig. N°9.- Secuencia característica de ríos entrenzados en el Grupo Mitu
hemos considerado al Grupo Mitu como un horizonte estratigráfico, lo que tal vez no es el caso en todas partes.

Las rocas sedimentarias están constituidas por fluviales típicos. Por lo general se trata de secuencias características de ríos entrenzados proximales, con una gran proporción de conglomerados tal como se esquematiza en la fig. 9 y que ha sido observada en la Quebrada Condoray (UTM 617x8553 aprox.). El tamaño de los clastos es muy variable de un sitio a otro, así se tiene: 0.30 m. en la Quebrada Condoray, 0.10 m. en Sacharajay (UTM 625x8554.5 aprox.), 0.10 m. en Mara-Mara (UTM 642x8542 aprox.). El grado de redondez también es variable de un sitio a otro: anguloso a subanguloso en la Quebrada Condoray y en Sacharajay, subredondeado en Mara-Mara; cuando el grado de redondez es anguloso a subanguloso, es muy frecuente encontrar clastos bien redondeados, generalmente de tamaño reducido (0.05 m), de cuarcitas. Tal mezcla de clastos con redondez diferente debe ser interpretado como efecto de la erosión de antiguas series conglomeráticas. Finalmente, la naturaleza de los clastos es también muy variada: rocas volcánicas, granitos grises y rosados, rocas epimetamórficas (esquistos, micaesquistos), calizas del Grupo Tarma-Copacabana indiviso, cuarcitas y lutitas silicificadas. El tipo de secuencia que se observa en la figura nº 9 es muy común y está asociada con otras de grano más fino (microconglomerados, areniscas gruesas y medianas) teniendo siempre una base erosiva, con granos principalmente subredondeados a subangulares.

Las secuencias de orden inferior se agrupan en sucesiones de gran importancia debido a que su organización caracteriza el medio sedimentario en el cual se han formado. En el Cerro Saramañana que domina la Quebrada Condoray, el Grupo Mitu sedimentario sobreyace al Mitu volcánico con una potencia de 650 m. Las areniscas y conglomerados rojos se presentan en dos secuencias granocrecientes (base esencialmente arenosa y de conglomerados finos) (foto nº6) que indican que los sedimentos fluviales se han depositado en un ambiente de abanico aluvial (Steel et al., 1977). En cambio, en la zona de Mara-Mara, los sedimentos Mitu (550 m. aproximadamente) se presentan en dos secuencias granocrecientes (base conglomerática y parte superior arenoarcillosa), que indica que se han depositado en un ambiente de ríos entrenzados relativamente proximales (Rust, 1982). Si los dos afloramientos del Grupo Mitu sedimentario (Cerro Saramañana y Mara-Mara) pertenecen al mismo sistema aluvial, la cuenca tendría una polaridad Norte-Sur con zonas muy proximales hacia el Norte y zonas menos proximales hacia el Sur; dicha polaridad es coherente con el grado de redondez.

No siempre están asociados los sedimentos Mitu a rocas volcánicas. Por ejemplo en el sur de la hoja, el Grupo Tarma-Copacabana esta sobreyacido directamente por algunos centenares de metros de sedimentos continentales rojos conglomerádicos y arenosos. tal es el caso del Cerro Huachulla (UTM 625x8514) o en Mara-Mara. Dos posibles explicaciones se pueden dar en estas partes del cuadrángulo; una es que no hubo actividad magmática
durante el Permiano superior-Triásico inferior y otra es que se produjo una erosión de los depósitos volcánicos en ciertas zonas positivas levantadas por fallas, antes de la sedimentación continental.

Edad y Correlación

En ausencia de elementos de datación (fósiles o edades radiométricas) atribuimos al Grupo Mitu en el cuadrángulo de San Miguel una edad Permiano superior-Triásico inferior pues, por su posición estratigráfica: sobreyace al Permiano inferior e infrayace al Triásico superior (parte inferior del Grupo Pucará).

El Grupo Mitu del Cuadrángulo de San Miguel se correlaciona con las series volcánicas-sedimentarias rojas descritas bajo el mismo nombre en otras regiones del Sur y Centro del país.

Careciendo de elementos de datación, no podemos excluir completamente la posibilidad de que todo o parte de los sedimentos de la parte superior del Grupo Mitu puedan pertenecer al Triásico superior-Jurásico. Efectivamente, V. Carlotto (comunicación verbal) encontró en la región del Cuzco unos centenares de metros de sedimentos continentales rojos, de ambiente fluviál y desértico, idénticos al conjunto formacional Sayari, Ravelo, Ichoa; de la región andina boliviana datado por Sempere (1995) como del Triásico superior-Jurásico.

4.2. Mesozoico

Las rocas sedimentarias del Mesozoico no están bien representadas en el cuadrángulo de San Miguel. se presentan bajo dos disposiciones muy diferentes separadas por un sistema de fallas que atraviesa la hoja, desde San Miguel al NW y Ocobamba al SE. Esta zona de falla, que de ahora en adelante llamaremos ZFSMO, constituye pues un límite paleogeográfico importante que trataremos de caracterizar en la descripción de las dos series mesozoicas.

EL MESOZÓICO AL SUR DEL SISTEMA DE FALLAS DE SAN MIGUEL-OCOBAMBA

TRIÁSICO SUPERIOR-JURÁSICO

4.2.1. GRUPO PUCARA

En esta zona del cuadrángulo, solo aflora la base de la serie mesozoica representada por la parte inferior del Grupo Pucara (Jenks, 1951). Dichas rocas corresponden a evaporitas y bancos de calizas grises, muy a menudo fragmentadas por los movimientos de las evaporitas inducido por la tectónica y/o diapirismo.
El único sitio donde se ve el contacto estratigráfico entre el Grupo Púcara y su substrato se ubica en el extremo sur de la hoja, en los alrededores de la Hacienda Generosa (UTM 630x8508 aprox.). En esta zona se observa, encima de los sedimentos continentales Mitu, una potente serie evaporítica de varios centenares de metros, que aflora solamente en parte de la hoja de San Miguel pero que se desarrolla ampliamente a lo largo de la carretera que une la Hacienda Generosa con la ciudad de Chincheros (parte NE del Cuadrángulo de Chincheros).

En la Hacienda Generosa, El Grupo Pucará está representado por varias secuencias evaporíticas que descansan concordantemente sobre los conglomerados rojos de la parte superior del Grupo Mitu. Dichas secuencias (foto n°7) de 5 a 10 metros de grosor muestran una proporción de evaporitas que van creciendo desde la base hacia la parte superior. La base esta compuesta por dos metros de una alternancia de bancos de areniscas finas de color gris violáceo y de arcillas verdes y violáceas con fuerte proporción de cristales de yeso.

Encima se hallan dos metros de una sucesión de bancos milimétricos de areniscas finas, calizas mudstone grises y evaporitas. El conjunto presenta un aspecto ondulado y microfracturado debido a la inestabilidad de las evaporitas (durante la sedimentación o una diagénesis precoz) y posiblemente también a disposiciones alcalinas estromatolíticas. El tope de la secuencia muestra una capa de uno a dos metros de evaporitas (esencialmente yeso) que sea laminada o sea masiva. La base del Grupo Pucará, en esta zona consiste de una superposición de varias secuencias evaporíticas cuya proporción va aumentando conforme se sube en la serie. Pasando al cuadrángulo de Chincheros no se distingue más esta organización secuencial, solo aflora yeso masivo rojizo envolviendo bancos fragmentados de calizas gris finamente laminadas de tipo tidal (laminaciones alcales, laminaciones tidales milimétricas de calizas de grano y de calizas mudstone, etc.)

Ambiente de Sedimentación

Estas secuencias son típicamente de tipo Sebkha (Sherman, 1978), se han originado en un ambiente supratidal evaporítico. Corresponden a la evaporación de lagunas costeras que se desarrollaban periódicamente en el borde de la plataforma carbonatada de la cuenca del Triásico superior-Liáisico (Grupo Pucará). Los sedimentos arenoarcillosos de la parte inferior de las secuencias; representan el relleno durante las fases transgresivas, o también al momento de tempestades de fuerzas excepcionales en las lagunas ocasionadas por aguas marinas cargadas de partículas arcillosas y de pequeños granos de arena. Los niveles superiores de la secuencia traducen la evaporación progresiva del agua de la laguna.

La región del departamento de Apurímac cubierta por los cuadrángulos de San Miguel, Chincheros, Andahuaylas y Abancay corresponde a las zonas más proximales de la

Foto N° 7. Vista de la secuencia evaporítica en la base del Grupo Pucará.
plataforma carbonatada del Triásico superior-Liásico, cuyas partes más profundas se encontraban más al Norte, al Noroeste en la sierra y la zona subandina del Perú Central.

Edad y Correlación

No hemos encontrado elementos paleontológicos de datación en la serie evaporítica del cuadrángulo de San Miguel que acabamos de describir, el ambiente sedimentario evaporítico no es muy favorable al desarrollo de una vida animal o vegetal (excepto algunas algas microscópicas).

Por su posición estratigráfica concordante encima del Grupo Mitu y por el hecho de que la unidad que describimos como grupo en el cuadrángulo de San Miguel pasa al cuadrángulo de Chincheros donde la serie estratigráficamente está mejor definida es que, atribuimos a la serie evaporítica post-Mitu del SW de la hoja de San Miguel al Grupo Pucará. Los sedimentos supratidales del Grupo Pucará del departamento de Apurímac corresponden al comienzo de la transgresión del Triásico superior en los Andes Centrales (Carniano), y representan el Período de mayor extensión de la transgresión (Noriano). Efectivamente, después del Noriano comienza una regresión y el mar alcanza su más bajo nivel en el límite Triásico-Liásico.

EL MESOZOICO AL NORTE DEL SISTEMA DE FALLAS DE SAN MIGUEL-OCOBAMBA

CRETACICO INFERIOR

4.2.2. FORMACION SAN FRANCISCO

En esta parte de la hoja atribuimos al Mesozoico una serie azóica de arcillitas rojas con niveles verdescos e intercaladas con bancos de areniscas rojas y de cuarcitas blancas; llamamos a esta serie Formación San Francisco. Estos sedimentos, esencialmente continentales, afloran en dos sitios: en las cercanías de Huajana y Ongoy en el SE de la hoja (UTM 644x8520) y en el flanco norte del Cerro San Francisco (figura n° 10) de donde hemos tomado el nombre de la Formación. En los dos sitios, dicha serie descansa en discordancia paralela sobre el Grupo Mitu y está cubierta en discordancia angular por capas rojas conglomeráticas.
Fig. N°10. - Afloramiento de la Formación San Francisco cerca a Huajama a Ongoy
Fig. N°11.- Afloramiento de la Formación San Francisco Cerca de Huajama y Ongoy
En la región de Ongoy-Huajana (figura 11), el Mesozoico tiene una potencia de aproximadamente 1000 m., estando constituido por una serie roja esencialmente arcillosa descansando en discordancia (discordancia paralela?) sobre el Grupo Mitu e infrayaciendo en discordancia angular a las capas rojas conglomerádicas de la Formación Ongoy. La serie está conformada por cuatro secuencias arcillosas con base arenosa (marcadas como 1,2,3 y 4 en la figura 11). Las areniscas que conforman la base de la primera secuencia son cuarcíticas, tienen una gran analogía de facies y de posición estratigráfica con la Formación Huancané (Newell, 1948) de la región de Cuzco. Por esta razón las hemos individualizado en el mapa con el símbolo Kih.

Las otras areniscas que conforman la base de las areniscas son menos cuarcíticas. Tienen una potencia de 10 a 15 m. y se organizan en bancos de 20 a 50 cm. alternando con bancos de arcilla. Son de grano mediano a fino y presentan frecuentes estructuras de corrientes tales como: ondulitas y laminaciones arqueadas (pequeños canales). Notamos de vez en cuando la presencia de algunos canales microconglomerádicos en la base de las areniscas. Las estructuras sedimentarias indican una corriente con rumbo SW (N 230°).

Las arcillas son rojas con frecuentes intercalaciones de niveles calcáreos de color verdusco. En los niveles verdes de la parte superior de la secuencia 2 encontramos carofitas que aún no han sido determinadas.

El ambiente sedimentario de la Formación San Francisco de la región Ongoy-Huajana corresponde a un sistema fluvial muy distal desagüando hacia el SW.

No hemos encontrado elementos paleontológicos de datación, así que la atribución de una edad mesozoica a la serie se basa únicamente sobre correlaciones litoestratigráficas regionales. Si lo que llamamos Huancané es efectivamente equivalente a la Formación Huancané del Sur del Perú cuya edad ha sido determinada del Neocomiano en la región del Cuzco (Doubinger y Marocco, 1976) la Formación San Francisco comienza en el Cretáceo inferior. La discontinuidad del tope de la formación es una discordancia angular que podemos atribuir en primera aproximación a la fase peruana (Steinamann, 1929), que Jaillard (1992) data del Coniaciano-Campaniano. La edad de la Formación San Francisco es pues Cretáceo inferior-Coniaciano y se correlaciona con las formaciones Huancané y Yuncaypata de la región de Cuzco. Hacia el S y SW se correlaciona con las formaciones Chuquibamba, Soraya, Mara y Ferrobamba descritas por Pecho (1981) en los cuadrángulos de Chalhuancan, Antabamba y Santo Tomas.

En la región al Sur de la ciudad de San Miguel, La Formación San Francisco aflora en el flanco sur del cerro del mismo nombre. Sus relaciones estratigráficas son las mismas que en la zona de Huajana-Ongoy: descansa en discordancia paralela sobre el Grupo Mitu (aquí se trata del Mitu volcánico), lo que sugiere una erosión anterior a la sedimentación de la
Formación San Francisco y está sobreyacida en discordancia angular por las capas rojas conglomerádicas de la Formación Ongoy. La figura 10 esquematiza estas relaciones estratigráficas.

En esta zona, la Formación San Francisco es más arcillosa que en el SE de la hoja (foto n°8). La serie presenta en su parte inferior varios bancos (0.5 a 1 m. de potencia) de cuarcitas blancas asociadas a bancos de areniscas finas con laminaciones horizontales, parting lineation y ondulitas. La serie debe corresponder a un ambiente fluvial muy distal.

PALEOGEOGRAFÍA DURANTE EL MESozoICO

Es evidente la diferencia entre las series mesozoicas ubicadas de una y otra parte de la zona de fallas de San Miguel-Ocobamba (ZFSMO). Solo un acortamiento tectónico importante puede explicar la yuxtaposición de las dos series. Dicha zona de fallas tiene actualmente una disposición inversa pero pensamos que durante la sedimentación mesozoica su disposición era la de fallas normales.

Trabajos anteriores (Audebaud et al., 1976, Marocco 1978, Dalmayrac et al., 1980, Jaillard, 1992, Jaillard et al., 1994 etc.) mencionan la existencia de una zona poco subsidente, con un umbral en el borde Nororiental de la cuenca occidental mesozoica. Este umbral separaba las dos zonas subsidentes: la cuenca occidental y la cuenca oriental. Su extensión, perpendicular a los Andes actuales, abarcaba el Altiplano Sureño de la Cuencilla de los Planicies Altas (continuación hacia el Norte del Altiplano) y la Cordillera Oriental.

En el Triásico superior-Jurásico inferior el Grupo Pucará se deposita al SW de la ZFSMO con facies de borde de cuenca. Al NE, es decir sobre el umbral, el Grupo Pucará se depositó y fue posteriormente erosionado durante el Dogger-Malm, o el umbral funcionaba como una zona positiva y no hubo sedimentación.

Durante el Cretáceo, el umbral recibe un aporte continental de ambiente fluvial muy distal. Dicho umbral no era muy elevado respecto al nivel del mar pues los pulsos transgresivos pasaron por encima del umbral para alcanzar la cuenca oriental. Al mismo tiempo, en la cuenca occidental se depositaban los sedimentos marinos del Grupo Yura superior, de la Formación Mara y de La Formación Ferrobamba. La Formación Anta-Anta está representada por los sedimentos continentales consecutivos de la regresión marina inmediatamente anterior o contemporánea a la tectónica peruana. No hemos tenido tiempo de levantar precisamente secciones estratigráficas en la Formación San Francisco en el Cuadrángulo de San Miguel, así que no podemos afirmar o negar la existencia en la serie de niveles nítidamente marinos testigos de la inmersión periódica del umbral durante las pulsaciones transgresivas.
La tectónica andina, primero la fase peruana y después las fases terciarias, reactivaron las falla normales haciéndolas inversas separando el umbral de la cuenca occidental. El acortamiento tectónico provocó un acercamiento de los dominios respectivos de la cuenca occidental y del umbral. Pensamos que el juego inverso de la ZFSMO puede explicar porque al SW de la ZFSMO solo aflora la parte inferior de la serie mesozoica (Grupo Pucará). El levantamiento del compartimiento SW respecto al compartimiento NE fue responsable de la erosión de la serie mesozoica. Tal vez es la fuente de la sedimentación de las capas rojas que afloran del lado NE de la ZFSMO y cuyas cuencas están ligadas a dicha zona de fallas.

La figura n°12 esquematiza las diferencias estratigráficas entre el umbral (zona 3 en la figura) y la cuenca (zonas 2 y 3).

4.3. MESOZOICO-CENOZOICO

El primer evento tectónico andino importante que ocurrió en los Andes Centrales fue la fase peruana (Steinmann, 1929) que se produjo del Coniaciano al Campaniano (Jaillard, 1992). En el cuadrángulo de San Miguel las series discordantes sobre las rocas mesozoicas son pues post-maastrichtianas. Así que bajo la denominación de Terciario describiremos el conjunto de las series discordantes sobre el Mesozoico y cuya edad incluye evidentemente el Terciario pero también el Cretáceo terminal (Maastrichtiano).

Describiremos sucesivamente la Formación Ongoy (capas rojas), la Formación Ayacucho y el volcánico Lucho Jahuana Pampa.

4.3.1. FORMACION ONGOY

Bajo esta denominación describimos una serie de sedimentos fluviales rojos conglomerádicos y arenosos que afloran episódicamente en el borde Nororiental de la ZFSMO, desde San Miguel hasta Ocobamba. Llamamos Formación Ongoy a esta serie por estar bien desarrollada en los alrededores de dicha localidad ubicada al SE de la hoja (UTM 644x8518) sin embargo, es en el flanco NW del Cerro San Francisco (UTM 620x8550 aprox.) donde se nota mejor su litología y sus relaciones estratigráficas con su subestrato mesozoico (fig.n°10). No se puede evaluar la potencia de la serie de capas rojas ya que siempre en su parte superior está afectada por una de las fallas inversas de la ZFSMO. En el Cerro San Francisco así como en Sacharajay (UTM 625x8554) la serie muestra aproximadamente 300 m. de potencia (fig.n° 10). En los alrededores de Ongoy, el afloramiento es más potente, alcanzando aproximadamente 500 m.
Foto Nº 8. Vista del Mesozoico que aflora al Sur del Cº San Francisco.

Foto Nº 9. Vista de la base de una secuencia conglomerádica. (Parte inferior de la Formación Otway, 3 Km al Este de Chilcas).
Fig. N°12 - Correlación de las columnas estratigráficas de los Cuadrángulos de Chahuanca - Antabamba - Sto Tomás con el Cuadrángulo de San Miguel.
DESCRIPCION DE LA SERIE

En todos sus afloramientos la Formación Ongoy ofrece las mismas características:

Descansa en discordancia angular sobre su subestrato del Mesozoico o del Paleozoico superior.

Es de ambiente sedimentario fluvial proximal.

Presenta una organización granulométrica granopecreciente.

Su color es rojo ladrillo, muy diferente al de los sedimentos fluviales del Grupo Mitu que tienen un color más oscuro (concho de vino).

La figura n° 13 representa, en forma esquemática, la columna estratigráfica de la Formación Ongoy al NW del Cerro San Francisco. La serie está constituida por unas quince secuencias fluviales proximales.

Cada secuencia tiene de 10 a 30 m. de potencia.

Su parte inferior es conglomerática, mostrando un discontinuidad basal erosiva. Estos conglomerados son subredondeados a redondeados, muestran a veces un pátina de tipo desértico, indicando que reinaba un clima semiárido a árido durante el período de sedimentación. Las dos principales estructuras que se observan son 1) las laminaciones arqueadas que indican una sedimentación en canales de ríos y 2) las laminaciones paralelas que se forman en las barras longitudinales que separan los canales activos. Por lo general, los conglomerados son con «soporte de clastos» es decir que los clastos se tocan, lo que indica un transporte y una sedimentación en aguas limpias. A veces, se puede ver algunos bancos de conglomerados con «soporte de matriz», es decir que los clastos no se tocan y se presentan envueltos en una matriz arenosa-arcillosa; se trata de depósitos de flujos de lodo y de piedras (huaycos) que se forman cuando las crecidas excepcionales de los ríos arrasan con todo, incluyendo parte de sus riberas. Los clastos son de orígenes diversos: calizas del Grupo Tarma-Copacabana, rocas volcánicas y sedimentarias del Grupo Mitu, intrusive granítico gris o rosado, cuarcitas blancas y grises, calizas Pucará o Ferrobamba. Es frecuente encontrar lentes de arenas gruesas dentro de los conglomerados, correspondiendo ellos a los periodos de aguas bajas (de poca energía) que siguen a los periodos de aguas altas de mayor energía. La foto n°9 muestra un ejemplo de conglomerados de la Formación Ongoy.

La parte superior de las secuencias están constituidas por sedimentos finos (areniscas de grano grueso a fino, arcillas) que corresponden a la llanuras de inundaciones de los ríos proximales.
Fig. N°13.- Serie granocreciente en la formación Ongoy
(nótese las secuencias finas en el techo)
Vista en su conjunto (figura n°13) la serie es granocraciente. Solo las últimas secuencias son finas (arenosas o microconglomerárquicas), indicando que la energía de los ríos responsables de la sedimentación de las capas rojas disminuyó rápidamente. A una cota de 200 m. aflora un conglomerado muy llamativo. Está compuesto por enormes bloques subangulosos de hasta 6 m. de diámetro. Se trata seguramente de un conglomerado de tipo sieve deposit, que se formó en el plano inclinado de un abanico aluvial teniendo a su favor varias crecidas catastróficas. Los bloques más grandes pueden ser bloques caídos, desde los relieves circundantes, sobre el abanico.

La Formación Ongoy, vista en su totalidad varía de grano de una a otra parte de la hoja. En el cerro San Francisco, el grano es mayor que en Ongoy. En la foto n°10 se presenta la parte inferior de la formación cerca a Ongoy, muestra una secuencia esencialmente arenosa (areniscas gruesas y medianas) donde solo el fondo de los canales de la parte inferior de la secuencia contienen clastos de un máximo de 2 cm. de diámetro.

Ambiente de Sedimentación

El conjunto de la Formación Ongoy se ha depositado en un ambiente fluvial proximal de ríos entrenzados (braided) conglomerárquicos. El paso brusco, en cada secuencia, de los conglomerados (canales o barras longitudinales) a los finos (llanura de inundación), indica que el clima era árido o semiárido, lo que está comprobado por la pátina de clastos en ciertas secuencias.

La organización granocraciente y estratocraciente observada en todos los afloramientos de la Formación Ongoy indica que las zonas de aportes eran cada vez más cercanas y/o elevadas. Esta disposición, asociada al hecho de que la Formación Ongoy esté ligada al borde Nororiental de la ZFSMO, nos hace considerar que las capas rojas son los sedimentos correlativos del juego en falla inversa de la ZFSMO, que se han depositado en una depresión o varias depresiones que se constituyeron al pie de los relieves. A escala reducida, es la misma disposición geodinámica de una cuenca de antepais. La figura n° 14 extraída de Marocco (1994) esquematiza la génesis de estos tipos de cuencas y la explicación de la granocrecencia de los sedimentos.

Edad y Correlación

En la parte inferior de la Formación Ongoy, en las cercanías de Huajana, encontramos carotitas en niveles verdes calcáreos interestratificados en las arcillitas rojas de la parte superior de una secuencia (UTM 643.3x8522.00). Las mismas que fueron determinadas en el laboratorio de Paleontología de INGEMMET por Morales María como:

Tectochara supraplana sulcata
Fig. N°14.- Génesis de secuencias granocrecientes en una cuenca de antepais
Tectochara supraplana supraplana (PECK & RECKER)
Porochara gildemeisteri (BLISSENBACH)
Tectochara sp.

Estas especies son características del Cretácico superior.

La discordancia angular y la fuerte erosión que constituye la discontinuidad basal de la Formación Ongoy corresponde a la Tectónica peruana del Coniaciano-Campaniano. Las capas rojas son, pues posteriores a esta fase, su parte inferior debe ser del Maastrichtiano al igual que las capas rojas de Cuzco (Formación Puquin, Carlotto et al., 1992).

No tenemos indicaciones de edad para la parte superior de la Formación Ongoy. Pensamos que las capas rojas pueden llegar hasta el Oligoceno o Mioceno inferior. Las discordancias angulares intraformacionales que encontramos en la Formación Ongoy, entre Huajana y Mara-Mara (figura n°11) se produjeron en el Paleoceno (fase paleocénica?) o el Eoceno (fase incaica?). Un estudio más detenido de la edad de la Formación Ongoy sería necesario si se quiere establecer con precisión la edad de la Tectónica (o de las tectónicas sucesivas) que provocaron el juego inverso de la ZFSMO.

En la espera de nuevos datos, podemos correlacionar las capas rojas de la Formación Ongoy con el Grupo San Jerónimo (Maastrichtiano-Eoceno) de la región de Cuzco (Córdova, 1986) y también con la Formación Soncos del cuadrángulo vecino de Ayacucho (Morch et al.,1995).

NEOGENO

4.3.2. FORMACION AYACUCHO

Aflora escasamente en el límite Oeste de la hoja de San Miguel en la región de la Hacienda Matará (UTM 610x8528) donde descansa sobre el Grupo Mitu. Es la continuación y la terminación de los afloramientos de esta formación en la hoja de Ayacucho (Morch et al.1995) donde está mejor representada y presenta dos miembros volcánicos, uno explosivo (el miembro inferior) y otro efusivo en la parte superior.

La Formación Ayacucho de la hoja de San Miguel solo presenta una parte del miembro inferior (100 a 150 m. de potencia máxima). Consiste de tobas blancas alternando con sedimentos volcánicos-clásicos finos correspondientes a tobas y cenizas redepositadas en lagunas.

No encontramos elementos de datación de la Formación Ayacucho en los límites de la hoja de San Miguel, por lo tanto al igual que en la hoja de Ayacucho (7 a 8 m.a. Morche et al, 1995) se le atribuye la misma edad Mioceno superior.
4.3.3 VOLCÁNICO LUCHO JAHUANA PAMPA

Aflora en la esquina Suroccidental del cuadrángulo de San Miguel y es la continuación del Volcánico del mismo nombre de la hoja de Ayacucho (Morche et al., 1995).

Al igual que en la mencionada hoja, esta unidad está constituida por lavas andesíticas y Traquíticas que constituyen la planicie de la esquina SW de la hoja. También está unidad esta compuesta por brechas producto de explosiones.

El volcánico Lucho Jahuana Pampa hacia el Oeste descansa en discordancia angular hacia el Oeste sobre la Formación Ayacucho y el Granito de Querobamba (hoja de Ayacucho) y hacia el Este sobre el Granito de Querobamba, la serie del Paleozoico superior o del Mesozoico.

Las rocas volcánicas se emplazaron sobre un subestrato muy erosionado y de topografía muy irregular: en la hoja de Ayacucho y en el extremo Suroeste de la hoja de San Miguel donde el contacto entre el volcánico Lucho Jahuana Pampa y el Granito de Querobamba se ubica a 4000 m. de altura, mientras que en la zona de Ocros-Chumbes, el contacto con el Grupo Mitu y el Grupo Pucará se ubica a menos de 3000 m. Es decir que las lavas rellenaron depresiones de 1000 m. de profundidad.

Atribuimos al Volcánico Lucho Jahuana Pampa de la hoja de San Miguel la misma edad que en la hoja de Ayacucho es decir Mioceno superior (post 7 ma.)

DEPOSITOS RECIENTES

Describiremos en este párrafo todo los depósitos que comunmente se les denomina «cuaternario», pero que muy bien pueden ser más antiguos y llegar hasta el Plioceno. Estos depósitos son: los depósitos morrénicos, los aluviones y los coluviones.

En la hoja de San Miguel los depósitos recientes ocupan una gran superficie, a tal punto que pueden ocultar las relaciones estratigráficas y geométricas entre las unidades más antiguas. Tal es el caso por ejemplo de los depósitos que se tienen en el valle del río Pampas (sur de la hoja), en el valle del río Torobamba, o en los alrededores de la ciudad de San Miguel (esquina NW de la hoja).

4.3.4 DEPOSITOS GLACIARES: MORRENICOS

Están representados por morrenas de varios tipos: de fondo, laterales, y frontales. Por lo general sus afloramientos están muy disectados por las erosiones posteriores.
Las morrenas están constituidas por bloques de rocas de tamaño muy variable según los lugares. Así se tiene las morrenas laterales que muestran los bloques más grandes (foto n°11), frecuentemente estriados (foto n°12).

El desmantelamiento de las morrenas explica que se pueden encontrar bloques de rocas completamente ajenas al lugar. Es el caso del abra que domina Mara-Mara (UTM 643x8523) donde se ven bloques de 0.5 m de calizas del Permiano inferior cuya presencia no se puede explicar de otra manera que por el desmantelamiento de la morrena que domina la Laguna Anuri y que proviene del sur, específicamente, de los nevados que bajaban del macizo del Granito de Querobamba.

4.3.5. DEPOSITOS COLUVIALES

Son depósitos de alteración in situ (o casi in situ) en las rocas de las diferentes unidades anteriores. Estos depósitos no han sufrido mayor transporte. Están constituidos de clastos relativamente angulosos envueltos en una matriz areno-arcillosa tipo suelo. Los únicos fenómenos de transporte observados son las desestabilizaciones bajo el efecto del agua la que arrastra parte de los coluviones para constituir un flujo de lodo (huayco). También la reptación sobre las fuertes pendientes permite a los coluviones acumularse en las zonas bajas.

En ciertas zonas (región de San Miguel, del río Pampas) los coluviones pueden alcanzar espesores consecuentes (100 metros a más) como se puede observar en las fotos n° 14 y 15.

Los coluviones son posteriores a la erosión que labró profundamente a los Andes Centrales y que ocurrió consecutivamente al levantamiento Neógeno. El clima semiárido de las zonas ubicadas en las alturas intermedias (entre 1500 y 3000 m.), y la falta de vegetación, es muy favorable a la alteración (esencialmente mecánica) in situ de las rocas.

4.3.6. DEPOSITOS ALUVIALES

En la hoja de San Miguel hemos distinguido dos clases de sedimentos aluviales recientes: los depósitos de abanicos aluviales y los aluviones de río propiamente dichos.

Depósitos de abanicos aluviales

Son los que se observan esencialmente en los ríos y quebradas tributarias del río Pampas. Están constituidos por conglomerados transportados por los ríos de fuerte pendiente que desembocan en el citado río
Constituyen, según los valles considerados de, dos o tres secuencias cada una granocreciente, con clastos angulosos a subredondeados cuyo tamaño puede alcanzar un metro en las zonas proximales.

La foto n° 13 muestra un ejemplo de estos depósitos de abanicos aluviales en la desembocadura del río Jajamarca, hacia el río Pampas (SW de la hoja). Estos conglomerados están fuertemente erosionados por el encajonamiento reciente del río Pampas.

Depósitos aluviales recientes

Corresponden a los aluviones actuales o muy recientes de los ríos Pampas y esencialmente del río Torobamba esencialmente. Son típicamente aluviones de ríos proximales entrenzados como se le puede ver en la foto n° 16

En los niveles aluviales relativamente antiguos, que conforman terrazas dominantes de 10 a 20 m. en el curso actual del río Pampas, es frecuente encontrar intercalaciones lacustres (foto n° 17) que atestiguan períodos en que los deslizamientos (o derrames volcánicos) represaban el curso del río.
Geología del Cuadrángulo de San Miguel

Foto Nº 10. Vista de la secuencia microconglomerática parte inferior de la Formación Óngoy (5 Km al SO de Óngoy).

Foto Nº 11. Vista de una morrena en el extremo Sur de la hoja. (Carretera Chincheros-Huajana).

Foto N° 14. Vista de material coluvial en San Miguel (NO de la hoja).

Foto N° 15. Vista de material coluvial cerca a la Hda. Generosa (Sur de la hoja).
Geología del Cuadrángulo de San Miguel

Foto Nº 17. Vista de depósitos lacustres recientes (margen derecho del río Pampas, cerca al puente Pampas).
Capítulo V

ROCAS INTRUSIVAS

Las rocas ígneas aflorantes en el cuadrángulo de San Miguel, según relaciones estratigráficas tienen en edad un rango que va del PaleoZOico al CenoZOico temprano.

PALEOZOICO SUPERIOR

5.1. ROCAS PLUTONICAS

Complejo granítico de Querobamba

Denominado así por Guevara en los cuadrángulos de Huancapi y Querobamba (inédito) es un macizo plutónico que infrayace discordante al Grupo Mitu. En el cuadrángulo de San Miguel se le encuentra situado en el sector Sur, reconociéndosele en el tramo de Chincheros a Huanccana, estando limitado en gran parte de su extensión por los ríos Pampas y Pulcay.

Según muestras obtenidas al Norte de Chincheros en la Qda. Suyroruyoc, litológicamente corresponden predominantemente a un sienogranito.

Una muestra obtenida en la quebrada arriba mencionada (SM-21), según características macroscópicas tiene un color gris con tono rosado, textura fanerítica. Bajo estudio microscópico presenta una textura granular, hipidiomorífica con crecimiento perítico entre FPKs-PGLs. Los minerales esenciales son las PGLs(20%), FPKs(<41%), cz(30%), y como accesorios bt(2%), CLOs(Trz), Lims, ef(trz), ap(Trz), ARCs(5%), Ser(2%), OPs(Trz).

Otra muestra (SM-22, foto N°19) obtenida también en la quebrada Suyroruyoc, denominada Diorita, presenta un color gris oscuro, textura fanerítica, de grano medio; microscopicamente presenta una textura intergranular; los minerales esenciales son PGLs(64%), Ser(10%), ANFs(10%) y como accesorios OPs(5%), MCs(5%), CLOs(3%), ep(2%), ap(1%), LCX.
Edad de Emplazamiento

Según la posición estratigráfica de este intrusivo, se halla infrayaciendo al Grupo Mitu, lo que también es evidenciado en el cuadrángulo de Chincheros. Estas conclusiones hacen pensar que ha sido emplazado con la tectónica Hercínica en su fase tardihercínica, es decir en el Permiano inferior a medio.

Plutón granítico

Hacia el extremo NE del cuadrángulo de San Miguel, en las proximidades de las localidades de Punqui, Chungi, Patahuasi aflora un gran cuerpo intrusivo (Foto N°18).

Según estudios petrográficos de 4 muestras obtenidas en el travel realizado entre Punqui-rio Apurímac (puerto Agua Dulce), ellas corresponderían a rocas plutónicas; así una muestra (SM-41), obtenida en las faldas del cerro Pucajasa y próxima a la Qda. Tayapampa l clasificada como sienogranito, según características macroscópicas presenta una textura granular hipidiomorífica teniendo; como minerales esenciales FPKs(49%), cz (22%) y PGLs(15%), y como minerales accesorios Pxs(5%), ARCs(5%), ANFs(5%), LIMs(1%), Ops(<1%), ep(Trz), CLOs(Trz), ef(Trz), zir(Trz), ap(Trz), ser(Trz).

Otra muestra (SM-43, foto N°20), tomada en el flanco derecho de la Qda. Tayapampa denominada Cuarzo Monzodiorita, macroscopicamente presenta un color gris claro con ligero tono verdoso, granularidad media. Bajo estudio microscópico presenta textura hipidiomorífica, teniendo como minerales esenciales PGLs(54%), FPKs(12%), ser(13%), cz(10%), como accesorios CLOs(<3%), ANFs(2%), ARCs(2%), ef(<2%), ep-zoi(1%), OPs(Trz), hm(Trz), zir(Trz), CBs(Trz), ap(Trz), cz(en venas) (Trz), LCX(Trz).

Una muestra (SM-47) obtenida en el flanco derecho de la quebrada Tayapampa en el camino a poblado de Patahuasi denominada como granodiorita (Metagranodiorita?), en muestra de mano tiene un color blanco a blanco grisáceo, granularidad fanerítica; Bajo estudio microscópico tiene textura granular, holocrystalina, parcialmente suturada; como minerales esenciales tiene PGLs(39%), cz(30%), FPKs(25%) y como accesorios bt (3%), Ops(0.5%), CLOs(1%), LIMs(0.5%), ef(Trz), ARCs(1%), MCs(Trz), zr(Trz).

Edad de emplazamiento

La información con la que se cuenta para asignarle una edad de emplazamiento al Plutón granítico, se basan en las relaciones estratigráficas ya que no se cuentan con dataciones radiométricas.
Foto N° 18. SM-22 Aumento 75x. Feldespato alterado a sericita (ser), clorita (CLOs) y epidota (ep); minerales opacos (Ops) diseminados.

Foto N° 19. SM-43 Aumento 75x. Feldespato alterado a sericita (ser), biotita cloritizada (CLOs), perlita (per) y cuarzo (cz).
Foto N° 20. Afioramiento de intrusivo (gd) en el camino al poblado de Patahuasi, situado al NE del cuadrángulo de San Miguel.
Las rocas a las que intruyen están representadas por la serie del Paleozoico inferior y el grupo Tarma-Copacabana de edad Carbonífero Superior-Permiano inferior, tal como es reconocido en la Qda. Tayapampa y río Pichi (Travel de Punqui-rio Apurimac); No existiendo otras formaciones a las que afecte por lo que se puede inferir que la edad de la intrusión sería a fines del paleozoico inferior.

PALEOGENO.

5.2. ROCAS PLUTONICAS.

Granito San Miguel.- Afloran al NO del cuadrángulo y Este del poblado de San Miguel, siendo reconocida tambien en la localidad de Chilcas. Este cuerpo granítico se presenta en forma alargada prolongandose hacia el cuadrángulo de Ayacucho.

Según características macroscópicas de 2 muestras obtenidas en la localidad de San Miguel y Chilcas respectivamente, presentan un color gris con tono rosado, granularidad fanerítica; la muestra obtenida proxima a San Miguel (SM-01,fotoN°23), bajo estudio microscópico tiene como minerales esenciales PGls (23%), FPKs (<44%), cz (20%) y como accesorios bt (4%), hor (4%), CLOs (1%), ef (Trz), ap (Trz), zr (Trz), ARCs (2%), ser (2%), mus (Trz), ep (Trz), OPs (Trz); en otra muestra tomada al Este de la localidad de Chilcas, los estudios microscópicos determinaron una textura granular hipidiomórfica, con crecimiento pertítico entre FPKs-PGLs; como minerales esenciales PGLs (18%), FPKs (<46%), cz (26%); accesorios bt (2%), hor (1%), CLOs (Trz), LIMs (Trz), ef (Trz), ap (Trz), zr (Trz), ARCs (2%), ser (2%), mus (Trz), ep (Trz), OPs (Trz).

Edad de Emplazamiento

A falta de estudios radiométricos para determinar la edad del granito San Miguel, recurrimos a las relaciones estratigráficas con la roca encajonante; así el granito se encuentra afectando al Grupo Mitu, a la Formación Ongoy del Cretáceo superior-Paleógeno, por lo que se le podría atribuir al Paleoceno-Eoceno.

PALEÒGENO-NEOGENO

5.3. ROCAS HIPABISALES.

En las localidades de Llajuapampa, C° Buenavista, C° Corpas, en la margén Este del río Torobamba (proximidad a San Miguel), afloran una serie de pequeños Stocks ácidos de composición riolítica.
Macroscópicamente presentan un color gris claro con presencia de fenocristales de color gris claro, con presencia de fenocristales de color gris claro y rojo, granularidad parcialmente fanerítica; según características microscópicas de una muestra obtenida (SM-02,fotoN°24), presentan una textura porfirítica:Fenocróstales de PGLs,cz,bt en una matriz microcriptocrástina desvitrificada a FPs(FPKs-PGLs),cz y diseminaciones de OPs; como minerales esenciales FPKs(62%),cz(18%),PGLs(15%); accesorios bt(2%), ser(<2%), Ops(<1%), CBs(Trz), LIMs(Trz).

Otros stocks hipabiásales son reconocidos al NE del área de estudio; en este sector aflora una andesita en el flanco derecho de la Qda. Jollpa (C° Atampa), situado al Norte de Chiquintirca y otro afloramiento similar es reconocido en el C°Cachihuasi al Sur de Punqui.

Litológicamente ambas rocas hipabiásales, según 2 muestras obtenidas y analizadas bajo estudio microscópico, son determinadas como andesitas porfiríticas; la muestra procedente del cerro Atampa (SM-18,fotoN°21), macroscópicamente presenta un color gris a gris claro, granularidad parcialmente afanítica. Según características microscópicas presenta textura porfirítica, en sectores glomerofíticos: Fenocróstales de PGLs,ANFs,bt y Ops en una matriz direccionada de laminillas de PGLs,ANFs,bt, con diseminaciones de OPs, sus componentes minerales esenciales son PGLs(84%) y accesorios ANFs(7%), bt(5%), Ops(3%), Pxs(<1%), LIMs(Trz), ap(Trz).

Otra muestra andesítica procedente del cerro Cachihuasi (SM-12,fotoN°22), en muestra de mano tiene un color gris a gris oscuro con una débil tonalidad verdosa, granularidad afanítica; bajo estudio microscópico presenta una textura porfirítica: con Festos de plagioclasas en una matriz compuesta por microcristales de PGLs y FPKs en parte fluidal, teniendo como minerales esenciales PGLs(49%), Cac(18%), CLOs(12%); y como accesorios cz(5%), Ops(1%), FPKs(5%), rt(Trz), ser(5%), ARCs(5%).

Edad de emplazamiento

Estos cuerpos hipabiásales se encuentran intruyendo indiferentemente a las series pelitocarbonatadas del Grupo Tarma-Copacabana, a las secuencia detrítica de la formación Ongoy del Cretácico superior-Paleógeno por lo que la edad de su emplazamiento eventualmente se le asignaría al Oligoceno-Plioceno.
Geología del Cuadrángulo de San Miguel

Foto Nº 21 SM-01 Aumento 75x. Plagioclasas (Pgl) alteradas a sericita (ser), biolíticas (bt) parcialmente alteradas a cloritas (CLOs), cuarzo (cz) y minerales opacos (Ops).

Foto Nº 22 SM-02 Aumento 75x. Fenocristal de cuarzo (cz) corroído por la matriz, minerales opacos (Ops) y matriz microgranular.
Geología del Cuadrángulo de San Miguel

Foto N° 23. SM-18 Aumento 75x. Cristales de olivino (OLV) alterados a serpentina (SPT) a través de fracturas. Minerales opacos (Ops), biotita (bt) reemplazada por opacos en una matriz de grano fino.

Foto N° 24. SM-12 Aumento 75x. Granos de calcita (cac), feldespatos (Fps) y minerales opacos (Ops).
Los rasgos estructurales más destacados y que se pueden observar en el mapa geológico escala 1/100 000 así como en el esquema estructural (figura 15) es la zona de falla San Miguel-Ocobamba (ZFSMO). En la descripción estratigráfica se menciona que durante el Mesozoico dicha zona de falla desempeñó un papel importante en la evolución paleogeográfica de la región, durante el Mesozoico.

Durante los eventos tectónicos andinos, que se iniciaron en el Cretáceo superior y perduraron durante todo el Cenozoico, la ZFSMO se reactivó alcanzando una nítida inversión tectónica: las fallas normales que controlaron la sedimentación mesozoica se reactivaron como fallas inversas con vergencia nororiental.

En la hoja de San Miguel, las estructuras que allí se presentan representadas corresponden a las dos grandes orogénesis que afectaron la faja andina después del Precámbrico: la orogénesis hercínica y la orogénesis andina. Los terrenos deformados durante los eventos hecínicos pertenecen al Paleozoico inferior y afloran en el extremo noreste de la hoja. Todos los otros fueron deformados por los eventos andinos.

En lo que sigue describiremos los diferentes tipos de estructuras representadas en la hoja y después trataremos de establecer una cronología de las deformaciones.

6.1. DESCRIPCION DE LAS ESTRUCTURAS

Las diferencias litológicas y la existencia de la ZFSMO (zona de falla de historia muy antigua) permiten que en la hoja de San Miguel, se puedan ver estilos tectónicos muy diferentes; identificándose cuatro principales regiones estructurales que son:

- La esquina NE de la hoja
- La parte nororiental de la hoja donde afloran esencialmente las rocas del Grupo Tarma-Copacabana indiferenciado
- La zona de fallas de San Miguel-Ocobamba (ZFSMO)
- La parte suroccidental de la hoja
Si exceptuamos las deformaciones eohercínicas que afectan al Paleozoico inferior en la esquina NE de la hoja, las mismas que se produjeron en el nivel estructural inferior (8 a 12 km. de profundidad), todas las deformaciones observadas en el cuadrángulo de San Miguel pertenecen al nivel estructural intermedio a superior. En otras palabras la mayoría de las deformaciones se efectuaron entre 4 a 5 kilómetros de profundidad y la superficie.

6.1.1. LA ESQUINA NE DE LA HOJA

Las malas condiciones de los afloramientos por la vegetación tropical que cubre la vertiente amazónica de la Cordillera Oriental y a la fuerte alteración de las rocas, impiden efectuar una buena observación de las estructuras en las unidades del Paleozoico inferior.

El estilo tectónico es característico de los terrenos deformados a gran profundidad (10 km. o más) y que han sido posteriormente transportados a la superficie por levantamiento y erosión. Es decir que un gran período de tiempo pasó entre el momento de la deformación y la puesta a descubierto de estos terrenos.

Las únicas estructuras observadas son plieges métricos y microplieges cuyos ejes tienen un rumbo que varía de E-W a NW-SE. Dichos plieges están asociados a una esquistocidad de plano axial. Un metamorfismo epitermal afecta a las rocas (cuarcitas y micaesquistos) que proceden de una serie sedimentaria de tipo sílico-clástico. Existen por lo menos dos fases de microplegamiento, la primera fase es sinmetamórfica y contemporánea de una esquistocidad de flujo. La segunda fase es de menor intensidad y solo muestra una esquistocidad de fractura.

Estos terrenos son testigos de una deformación que se produjo a gran profundidad (nivel estructural inferior), sin ninguna similitud con la deformación de las otras regiones estructurales de la hoja las que tuvieron lugar a mucho menor profundidad. Esta diferencia de profundidad de las deformaciones indica que estas no son contemporáneas. Por esta razón, y por similitud de facies de las series afectadas con las de la Cordillera Oriental de la región de Cuzco-Abancay, atribuimos a la orogénesis Hercínica la deformación de los terrenos que afloran en la esquina NE de la hoja de San Miguel.

Este conjunto de plieges-esquistocidades correspondientes al tectonismo hercínico es a su vez afectado por una deformación posterior formándose pliegues amplios de eje NW-SE que pueden ser atribuidos a la orogénesis andina.

Desde el punto de vista morfoestructural esta zona con deformación hercínica pertenece a la Zona Subandina, zona de transición estructural (durante la tectónica andina) entre la Cordillera Oriental y la Cuenca Oriental de ante-pais (foreland basin).
6.1.2. LA PARTE NORORIENTAL DE LA HOJA

Esta región está ubicada al noreste del río Pampas y del río Torobamba (fig. a). Si exceptuamos las rocas intrusivas y los depósitos recientes, solo afloran en esta zona los terrenos calcáreos y lutíticos del Grupo Tarma-Copacabana indiviso. El estilo tectónico está caracterizado por pliegues hectométricos de planos axiales verticales o ligeramente inclinados hacia el SW, como por ejemplo en la zona de Chiquintirca Punqui o también al sur de los anticlinales siendo frecuente observar una esquistocidad de fractura tosca o fina según los lugares de la roca.

Esta unidad estructural está en contacto fallado (falla inversa de vergencia al NE buzamiento hacia el SW) con los terrenos hercínicos de la esquina NE de la hoja. Esta falla inversa es un rasgo tectónico importante; constituye el cabalgamiento principal (CP) de la Cordillera Oriental sobre la zona Subandina.

La deformación se vuelve más y más intensa cuando uno se acerca a dicha falla inversa: los pliegues son más apretados y muestran una intensa esquistocidad que llega a tener características de esquistocidad de flujo en los niveles más lutíticos. Se nota bien esta disposición a lo largo del río Alfarpampa, aguas abajo de chiquintirca en el camino que une dicho pueblo con la localidad de Tojata ubicada en el límite norte de la hoja.

Las fallas que afectan esta unidad estructural son por lo general de orientación NW-SE y E-W. En la sección estructural AA’ vemos que las fallas NW-SE pueden ser:

- De convergencia hacia el NE como la falla de Sacharajay que limita al SW la unidad estructural. Estas fallas son directamente sintéticas del cabalgamiento principal CP, por lo cual tiene el mismo buzamiento;

- De convergencia hacia el SW tal como la falla que va desde la Laguna Pichihuilca (UTM 648X8548) hacia el norte de la hoja pasando por la Laguna Husjucocha (UTM 634X8558). Esta falla, a pesar de tener una vergencia opuesta a la anterior es compatible con el acortamiento responsable de las fallas de vergencia NE. Es simplemente una falla antitética del PC.

Frecuentemente las rocas están muy deformadas en las vecindades de las fallas E-W, como por ejemplo a lo largo de la falla de Chiquintirca (UTM 640X8556) (foto 25). Los pliegues, de eje N 105, han sido creados por una compresión de rumbo NNE-SSW que determinó un juego sinestral en la falla E-W de Chiquintirca.

El estilo tectónico de la parte nororiental de la hoja de San Miguel está controlado por la litología de la potente serie del Grupo Tarma-Copacabana indiferenciado. La homogeneidad litológica de la unidad impide la existencia de niveles de despegue que podrían favo-
rrecer la formación de escamas tectónicas. El único nivel de despegue está constituido por la discontinuidad entre las calizas y lutitas calcáreas del Grupo Tarma-Copacabana y los esquistos del Paleozoico inferior.

6.1 3. LA ZONA DE FALLAS SAN MIGUEL-OCOBAMBA (ZFSMO)

La ZFSMO es una zona de fallas inversas, con vergencia hacia el NE que separa la zona paleogeográfica nororiental con sedimentación Mesozoica de tipo “Cuzco”, es decir con evolución esencialmente continental; de la zona paleogeográfica suroccidental con sedimentación marina de tipo “cuenca marina occidental”. La foto n° 26 muestra el límite oriental de la ZFSMO en Sacharajay (UTM 625X8554).

Esta zona morfoestructural constituye una depresión topográfica alargada en el sentido NW-SE, entre las partes nororiental y suroccidental de la hoja. Los terrenos que afloran en la ZFSMO pertenecen al Grupo Tarma-Copacabana; al Grupo Mitu; a la Formación San Francisco y a las Capas Rojas de la Formación Ongoy. El estilo tectónico dúctil es una deformación en grandes plieges hectométricos con planos axiales verticales o ligeramente echados hacia el NE, tal como se lo puede apreciar en las secciones estructurales AA’ y BB’.

Una característica importante de la ZFSMO es la existencia de pequeñas cuencas continentales de ambientes fluviales para la Formación Ongoy las mismas que están asociadas a varias fallas constituyentes del sistema. Como ya lo indicamos en el capítulo de “Estratigrafía” estas capas rojas son los sedimentos correlativos de la surrección de la cuenca occidental andina (parte suroccidental de la hoja) cuando se desarrolló la compresión andina.

Asociadas a las grandes fallas de rumbo NW-SE que constituyen el rasgo dominante de la ZFSMO, encontramos también fallas de rumbo aproximadamente E-W. Pensamos que estas falla son estructuras secundarias asociadas a un juego sinestral. Por falta de tiempo no fue posible efectuar un análisis estructural de los dos sistemas de fallas con el fin de comprobar o afirmar esta hipótesis. El juego sinestral de la ZFSMO que asumimos se produjo al mismo tiempo que la inversión de las fallas normales limitaron la cuenca andina occidental del umbral oriental, es decir que hubo reactivación de las diferentes compresiones terciarias en la mencionada zona.

6.1.4. LA PARTE SUROCCIDENTAL DE LA HOJA

El juego de la ZFSMO levantó esta zona morfoestructural respecto a las regiones orientales de las hoja. Los rocas sedimentarias que afloran en ella pertenecen al Paleozoico superior, al Mesozoico (Grupo Pucará) y al Terciario (volcánicos del Mio-Plioceno). Los rasgos estructurales principales de esta zona son:

- Pliegues de amplitud hectométrica a kilométrica, de plano axial vertical a subvertical
- Fallas que se desarrollaron según dos rumbos: N-S a NNW-SSE y E-W.

La estructura más espectacular de esta zona es el despegue de las calizas del Grupo Pucará sobre el Grupo Mitu debido a las evaporitas de la base del Grupo Pucará.

Este despegue es muy nítido en el abra que separa los cerros Jera Jera y Huachulla (UTM 624X8514 aprox.)

La presencia del granito de Querobamba y del Granito de San Miguel, que constituyen núcleos rígidos, puede explicar el estilo tectónico muy simple de esta zona respecto a la parte nororiental de la hoja.

6.2 CRONOLOGÍA DE LAS DEFORMACIONES

Las deformaciones que afectan a las rocas en el cuadrángulo de San Miguel se produjeron en dos principales períodos que son:

La orogénesis hercínica en los que concierne a los terrenos del Paleozoico inferior (esquina NE)

La orogénesis andina para los terrenos del Paleozoico superior, Mesozoico y Cenozoico.

6.2.1. CRONOLOGÍA DE LOS EVENTOS HERCÍNICOS

No se ha notado, en los límites del cuadrángulo de San Miguel la existencia de la tectónica Tardihercínica del Permiano medio (Audebaud y Laubacher, 1969) que marca, en ciertas regiones del sur del Perú, la discordancia angular del Grupo Mitu sobre el Grupo Copacabana.
6.2.2. CRONOLOGIA DE LOS EVENTOS ANDINOS

Todos los trabajos geológicos sobre el Perú escritos en los treinta últimos años, y que fueron sintetizados en Dalmayrac et al. (1980) y en Palacios (1995), muestran que la tectónica andina se produjo en varias etapas (o fases) que son:

- La fase intra-Albiana (fase Mochica)
- La fase peruana del Coniaciano-Campaniano
- La fase incaica del Eoceno superior.

La fase peruana con varios pulsos: 26-27 ma., 15-17 ma. 7 ma. 2.7 ma.

La figura 16 sintetiza los eventos tectónicos andinos.

En los límites del cuadrángulo de San Miguel, la primera manifestación tectónica andina está representada por la discordancia angular que se observa debajo de las capas rojas de la Formación Ongoy (de edad Cretáceo terminal-Eoceno) y sobre las lutitas rojas y las cuarcitas blancas de la Formación San Francisco (ver Fig. 8-A capítulo de estratigrafía). Jaillard (1992) mostró que la fase peruana presentaba dos etapas compresivas, una en el límite Coniaciano-Santoniano, y otra en el Campaniano superior. En una primera aproximación, podemos admitir que la discordancia angular de las capas rojas de la Formación Ongoy sobre la Formación San Francisco se debe a la compresión Coniaciana-Santoniana (aprox. 87-85 ma.).

El plegamiento de la serie Mesozoica se produce al mismo tiempo que la inversión tectónica de la parte suroccidental. Esta inversión provoca la depositación de las Capas Rojas Ongoy por erosión de los relieves nuevamente formados. Las discordancias intraformacionales que afectan a las Capas Rojas de la región Huajana-Ongoy (Fig. 12 del capítulo de Estratigrafía) se deben al segundo pulso de la fase peruana, o, más probablemente, al período Cretáceo terminal-Paleoceno habiendo sido posiblemente un período constantemente compresivo. Las Capas Rojas serían sedimentos sintectónicos.

No encontramos elementos para determinar la edad a la que tendría lugar el fin del plegamiento que afecta a las Capas Rojas de la Formación Ongoy. Esto depende de la edad de la parte superior de dicha formación, pudiendo haber varias posibilidades; una de ellas podría ser que se trate del final de la fase peruana o también de la fase incaica ocurrida al final del Eoceno. En ausencia de elementos de datación para la parte superior de la Formación Ongoy no podemos eliminar la posibilidad de que las Capas Rojas suban hasta el Oligoceno. En este caso la deformación se debería a una de las etapas de la tectónica Quechua.

Los trabajos realizados en el Perú (Dalmayrac et al., 1980 por ejemplo) y en Bolivia (Baby et al. 1993, Sempere et al. 1990) indican que se nota una progresión hacia el noreste de las deformaciones andinas. Por esta razón pensamos que la deformación de la Cordillera
Geología del Cuadrángulo de San Miguel
oriental (parte nororiental de la hoja) se produjo en varias etapas, posiblemente en el Eoceno superior (fase incaica), y durante el Neógeno (fase quechua 26-27 ma., 15-17 ma., 10 ma., 7 ma., 2.7 ma.). Como las deformaciones de estas fases son co-axiales al aplicarlos a los terrenos ante-mesozoicos (no hay series estratigráficas terciarias para materializar los diferentes pulsos), es imposible definir en esta parte nororiental la parte que pertenece a cada una de las fases andinas.

La Formación Ayacucho, atribuida al Mioceno superior sufrió seguramente el pulso de la tectónica quechua de 7 ma. Considerando los trabajos recientes realizados en Bolivia (Baby et al. 1993) o en Argentina (Allmendinger et al., 1993), podemos admitir que el cabalgamiento de la Cordillera Oriental sobre su ante-pais oriental se produjo durante los últimos pulsos de la tectónica andina, es decir desde 7 ma. hasta la actualidad.

El volcánico Lucho Jahuana Pampa no presenta deformaciones en los límites del cuadrángulo de San Miguel. Sin embargo, hemos podido detectar huellas de una deformación mucho más reciente que dicho volcánico. Se trata del basculamiento de una terraza del río Pampas (Foto n°27) en el límite sur de la hoja, un kilómetro al sur de la hacienda Generosa (UTM 629X8507). Esta terraza, ubicada a cinco metros encima del curso actual del río Pampas debe pertenecer al Cuaternario reciente. No podemos eliminar completamente la posibilidad de que este basculamiento sea debido, no a un esfuerzo tectónico, sino más bien a una asentamiento gravitacional de los aluviones del río Pampas, como por ejemplo bajo el efecto de una sacudida sísmica.
Aspectos Generales

El presente informe es el resultado del estudio en campo y gabinete de los aspectos geo-económicos en el cuadrángulo de San Miguel; ellos consistieron primero en la recopilación de información bibliográfica con datos obtenidos del archivo técnico del INGEMMET sobre las ocurrencias de mineralización metálica y no metálica en este cuadrángulo.

En el área de estudio la poca actividad minera que hubo décadas atrás y que se realizó a pequeña escala se encuentra paralizada sin desarrollo; debido a factores como:

- Falta de infraestructura vial.
- Elevados costos de producción.
- Baja cotización en el mercado mundial.
- A la explotación rudimentaria practicada en la zona se aúna la escasez de fuentes de financiamiento.

En el cuadrángulo estudiado se reporta un total de 17 ocurrencias minerales entre metálicas y no metálicas todas inactivas ubicadas en la mayoría de los casos en la parte NE y NO de la hoja.

7.1. MINERALES METÁLICOS.

En el cuadrángulo de San Miguel se tiene 15 prospectos polimetálicos, clasificados todos ellos dentro del rango de la pequeña minería encontrándose todos inactivos.

Los principales minerales que se extrajeron fueron de Cu, Pb, Ag y Zn.
7.1.1. Aspectos Geológicos.-

Rocas Encajonantes.-

Las rocas encajonantes de la mayoría de las ocurrencias minerales existentes en el cuadrángulo son Calizas sobre todo en su contacto con intrusivos granodioríticos y dioríticos, asimismo lutitas y pizarras del Grupo Tarma-Copacabana del Paleozoico Superior, y areniscas, arcillas y lutitas de las Capas Rojas del Cretácico Superior-Paleógeno.

Alteraciones.-

El tipo de alteración predominante en el área es hidrotermal (silicificación, caolinización). También se tiene una alteración supérgena (oxidación), y en algunos sectores dolomitización.

Mineralización.-

La mineralización se le encuentra generalmente en forma diseminada. El tipo de mineralización es la polimetálica mayormente Zn, Pb, Cu, Ag.

7.1.2. Principales Ocurrencias de Mineralización en el Área de Estudio.-

A continuación se hace una breve descripción de las ocurrencias minerales existentes en el cuadrángulo de estudio:

PROSPECTO CASCABEL.- (Cu, Ag)

Se ubica entre las coordenadas UTM:

8´516,496 N
624,504 E

Esta localizado en el paraje Turuqasa entre los 2,150 m. a 2400 m.s.n.m, en el distrito de Ocros, provincia de Cangallo, departamento de Ayacucho. Las rocas predominantes son las andesitas pertenecientes al Grupo Mitu fuertemente fracturadas en forma de bancos y presentando poca inclinación denotando que son post-orogenéticas. No se observan rocas igneas.
Este prospecto consta de una fractura mineralizada de rumbo N-S con buzamiento de 60°-65° E; cuyos anchos varían entre 0.30 y 0.80 m. siendo rellenados por minerales oxidados de Cu y Fe principalmente de malaquita, algo de crisocola y azurita. La ganga la constituye la calcita, limonita y el cuarzo. El afloramiento es discontinuo con una longitud de aproximadamente 250 m. estimándose que se pueda obtener un encampane de más o menos 180 m. El control y distribución es la fractura principal relacionada con otras más pequeñas. Las leyes promedio de la veta es 0.50 m. de potencia con 2.21 oz/Tc Ag y 7.62 % Cu. Se estimaron unas 20,000 TM (prospectivas). Sólo se han ejecutado 5 trincheras (cateos) a pulso que penetran máximo 2m. Se nos informó que trabajaban dos personas irregularmente.

Se han extraído 10 TM de mineral. En cancha se observa 7 TM de mineral sin escoger y 0.5 TM de mineral escogido una muestra de este mineral dio 7.3 oz/Tc Ag y 33.07 % Cu.

DENUNCIO CULLIONI.-(Ag,Pb,Zn,Cu)

Se ubica entre las coordenadas UTM:

8°554,000 N
632,000 E

El denuncio Cullioni se encuentra localizado en la ladera Oriental del Cerro Acapa, distrito de Anco, provincia de La Mar, departamento de Ayacucho. A una altura de 3,900 m.s.n.m. Las rocas predominantes son las calizas intercaladas con lutitas del Grupo Tarma-Copacabana del Permiano Inferior. Cortando esta secuencia se aprecian diques de andesita porfirítica de color verde olivo con rumbo E-O y buzando 70° a 85° al N y con espesores de 30 a 80 cm. El yacimiento consiste de un cuerpo ovalado con numerosas vetillas que contienen sulfuros entrecruzadas en diferentes direcciones dentro de una caliza alterada, alcanzando un afloramiento con 75m. de largo y unos 30m. de ancho con rumbo promedio E-O.

El mineral más abundante es la galena que rellena fracturas delgadas en cristales pequeños así como también en forma diseminada. En menor cantidad se aprecia chalcopyrita y esfalerita en chispas o granos asociados a la galena y como ganga pirita.

Además existe una veta de tipo relleno de fisura con una potencia de 2 a 4 m. aflorando a lo largo de 200 m. un rumbo general de N60°W con 70° de buzamiento al NE. La mineralización se presenta en forma de óxidos de cobre, chispas de chalcopyrita y pirita en cuarzo lechoso, con leyes antieconómicas en superficie las que podrían mejorar en profundidad.
El Banco Minero efectuó un muestreo sistemático a través de cuatro canales ejecutados en forma transversal al cuerpo. Las leyes promedio dieron 2.75 oz/Tc Ag, 10.20 %Pb, 3.95 %Zn, 0.03%Cu con estas leyes se han cubicado 57,000 TM de mineral probable accesible y 19,000 TM de mineral prospectivo con las mismas leyes.

Debido a las características geológicas y estructurales del yacimiento, este podría ofrecer posibilidades interesantes. Además podrían existir otros cuerpos cubiertos por material cuaternario o vegetación por lo que se recomienda un estudio geofísico.

En el área se aprecian pliegues de poca extensión algo asimétricos que tienen rumbo E-O y buzan 50°-70° al N. Las fallas son variadas habiéndose registrado fallas normales con rumbo cercano a N-S y buzamiento casi vertical de cortos desplazamientos. Las fallas inversas son predominantes y las fallas de desgarre de rumbo N-S que presentan desplazamientos horizontales de pocos metros, cortan y desplazan a las estructuras anteriores.

La alteración supérgena es una oxidación moderada de los sulfuros, apareciendo a profundidad los sulfuros frescos.

Solo se observan algunos cateos cubiertos por vegetación (ichu).

DENUNCIO OSA MAYOR.–(Ag, Pb, Zn, Cu)

Se ubica entre las coordenadas UTM:

8’553,794 N
631,700 E

Este prospecto se encuentra a una altura de 3,900 m.s.n.m. en el paraje Oyopucro (ladera oriental del C° Acapa), distrito de Anco, provincia de La Mar a 48 Kms en línea recta al Este de Ayacucho, la mineralización se encuentra alojada en el Grupo Tarma-Copacabana. Los denuncios Osa Mayor y Cullioni I son colindantes siendo sus características geológicas y mineralógicas semejantes.

Las reservas dadas para Cullioni I, también incluyen a Osa Mayor.

Igual que Cullioni I, éste depósito se encuentra en una fase de exploración incipiente.

Estos denuncios pertenecen a la Cía. Minera Krisol S.A.
MINA ANTACORRAL.-{(Zn, Pb, Ag, Cu).}

Se ubica entre las coordenadas UTM:

8’551,557 N
630,327 E

La mina Antacorral se localiza en el cerro del mismo nombre, distrito de Anco, provincia de La Mar, departamento de Ayacucho a una altura de 3,000 m.s.n.m.

Las rocas que circundan este prospecto son lutitas y margas silicificadas del Grupo Tarma-Copacabana que forman un anticlinal cuyo eje tiene N 120°E, apreciándose estructuras mineralizadas. Se trata de un manto de rumbo N 100°- 110° E y buzamiento 25° S, denominado San Pedro con una potencia de 1.5 m. constituido por pirrotita, pirita, trazas de chalcopirita, esfalerita y galena, la ganga la constituye la calcita pura en vetilllas con algunos cm. de espesor que cortan a la mineralización y a las rocas encajonantes. También se aprecia una veta con rumbo N 45° E y buzamiento 50° al Sur cortando a las lutitas silicificadas, con predominio de pirrotita, algo de chalcopirita y pirita. En algunas partes la mineralización está constituida por arsenopirita, chalcopirita y abundante fluorita.

En tiempos antiguos se nos informo que la mina fue trabajada en trincheras y galería, observándose la veta a través de un cateo.

MINA CRUZ MOJO.-{(Cu)}

Se ubica entre las coordenadas UTM:

8’551,479 N
633,851 E

Se localiza en el paraje Cerro Jatun Cruz en la vertiente SO, distrito de Anco, provincia de La Mar, departamento de Ayacucho, a una altura aproximada de 3,500 m.s.n.m.

Las rocas encajonantes son lutitas cubiertas por escombros de calizas que provienen de la parte alta del cerro y que están intruídas por riolitas.

Las lutitas y calizas del Grupo Tarma-Copacabana, forman un anticlinal que corresponde a la prolongación de la misma estructura cuyo eje de rumbo N120° viene desde el cerro Antacorral. Los indicios de mineralización se ubican en el flanco NE del anticlinal.

Se observan dos vetas, la primera con rumbo N40°-50°E buzando 30°al SE cuya potencia es de 1.5m. La mineralización la constituye la pirita y en menor proporción chalcopirita,
además de óxidos de alteración supergénica. La segunda veta tiene un rumbo de N 80° E y buza 60° al N con una potencia de 1m. La mineralización es similar a la veta anterior, estando ubicada aproximadamente 300 m. al N-O de la primera veta.

MINA ACAPA.- (Pb, Zn, Cu).

Se ubica entre las coordenadas UTM:

8’553,333 N
631,540 E

Está localizada en el paraje Cerro Acapa, Caserío de Anjay, distrito de Anco, provincia de La Mar, departamento de Ayacucho a una altura de 3,900 m.s.n.m. Este yacimiento emplazado en las lutitas y calizas del Grupo Copacabana consta de un cuerpo principal de forma elongada con rumbo promedio N75°O y que tiene las siguientes dimensiones 90m. de largo por 17 m. de ancho aproximadamente.

La mineralización lo constituye principalmente la galena y en menor cantidad chalcopyrita y esfalerita con una ganga de cuarzo y calcita.

La mejor mineralización se aprecia en la parte N-NO del cuerpo dentro de un área aproximada de 380 m² formada en calizas. La mineralización es débil y se presenta en venillas de hasta 1 cm. de potencia como resultantes del relleno en el fracturamiento de las lutitas.

Se ha observado 3 taladros de perforación diamantina efectuados por la compañía Frank Mines los mismos que se ubican así:

Taladro 1: En la parte E-SE del cuerpo (lutitas fracturadas con relleno de mineral, rumbo E-O, buzamiento vertical.

Taladro 2: Aproximadamente 70 m. al E del anterior, en calizas con venillas de cuarzo y galena con rumbo N18°E y buzamiento 30° al NO.

Taladro 3: En la parte NO del cuerpo principal, dentro de la zona de mejor mineralización. Tiene una inclinación casi vertical. Se tiene conocimiento que se han efectuado más perforaciones con diferentes profundidades de 30 a 80 m. Según el geólogo Mabire que laboró para la F. Mines manifestó que a profundidades mayores a 15m. no se encontraba buena mineralización.

Aparentemente se trata de un depósito de pocas posibilidades económicas, aunque podría ser que con mayor información geológica así como de las perforaciones diamantinas se puede llegar a una mejor definición del depósito.
MINA COMPENJA.-(Zn, Pb, Ag, Cu).

Se ubica entre las coordenadas UTM:

8°553,000 N
637,500 E

La mina se encuentra localizada en el Cerro Compenja, caserío de Punqui, distrito de Anco, provincia de la Mar, departamento de Ayacucho. A una altura de 3,650 m.s.n.m.

La mineralización esta alojada en calizas silicificadas que pasan hacia el Este a lutitas del Grupo Tarma-Copacabana.

Se ha observado dos estructuras mineralizadas con rumbos E-O y N70°E,cuyos buzamientos son 20°al N y 70°al SE. Las potencias de las estructuras varían de 0.30 m a 1m.

La primera estructura se ha reconocido con una longitud de 30 m., su mineralización consiste en esfalerita y galena argentífera en mayor cantidad; chalcopirita y pirita en menor cantidad, presentando bandeamiento en la zona de mayor potencia, predominando en partes el relleno de cuarzo. En las lutitas la estructura al Oeste se ramifica en venillas de cuarzo, para perderse bajo escombros recientes; habiendo la posibilidad que continúe. La estratificación de las calizas no se aprecia bien por lo que no se puede asegurar el tipo de estructura. El aspecto bandeado y la dirección paralela al rumbo general de las calizas sugieren una estructura tipo manto. Sin embargo el buzamiento parece menor al de las calizas.

Análisis químico efectuados por el BRGM (Francia) en tres muestras arrojan leyes promedio de: 34.8%Zn,28.5%Pb y 685 gr/TM Ag.

Estudios en secciones pulidas realizados por geólogos franceses, señalan la presencia de pirargirita y plata nativa, además de esfalerita, galena, pirita y chalcopirita.

La segunda estructura es una veta reconocida mediante una trinchera de 2.5 cm.de profundidad, ya que en superficie no se aprecia afloramiento. Presenta una potencia media de 0.60 m., con una mineralización constituida por chalcopirita y en escasa cantidad galena, arsenopirita y en moderada cantidad cuarzo. A unos pocos metros de la trinchera se ha explotado un cuerpo de forma irregular con 5.00 m. de largo por 2.50 m. de ancho, con igual mineralización. Se hace notar que se encontró un rodado de diorita con chalcopirita diseminada sin haberse podido ubicar su procedencia.

Este yacimiento toma importancia por la presencia de zinc en la primera estructura, además de cobre, plomo y plata.
MINA SENJAN.- (Cu)

Se ubica entre las coordenadas UTM:

8°555,500 N
631,217 E

Está mina esta localizada en el Cerro Senjan, caserío de Chiquintirca, distrito de Anco, provincia de La Mar, departamento de Ayacucho, sobre los 3,900 m. de altura.

Las rocas están constituidas por calizas y lutitas del Grupo Tarma-Copacabana, intruídas por un stock granodiorítico.

Los cuerpos mineralizados corresponden a un yacimiento de pequeñas dimensiones con minerales de chalcopirita y pirita emplazados en el contacto de las calizas con la granodiorita.

El cuerpo principal tiene forma elongada e irregular de rumbo N 60° E con 150 m. de largo por 25 m. de ancho como promedio. Otros tres cuerpos ubicados al Sur del cuerpo principal presentan dimensiones menores: 60m. x 6m.; 25 x 12m. y 10 x 7 m. (largo por ancho).

El cuerpo principal ha sido estudiado a través de pequeños cateos, así como por un socavón de 18m. de largo ubicado en la parte Sur en el contacto con las calizas. El mismo que se empezó sobre una estructura en manto de rumbo N 75° E y buzamiento 40° al NO de 0.90 m. de potencia media y una fuerte alteración hidrotermal.

En los primeros 10 m. la potencia del manto varía entre 0.70 m. y 1.00 m. con escasa cantidad de chalcopirita y abundante pirita. En los 8m. restantes han seguido vetillas de cuarzo con pirita y escasa chalcopirita, al borde de la labor se observa la caliza recristalizada y skarn de granates con débiles cantidades de chalcopirita y pirita.

En este yacimiento se observan carbonatos y sulfatos de Cu además de óxidos de Fe, expuestos mejor en el cuerpo más grande. Según versiones verbales fue explorado por una empresa norteamericana hace más de 40 años.

MINA PUNCO.- (Cu ,Fe).

Se ubica entre las coordenadas UTM:

8°550,206 N
636,494 E
La mina se encuentra localizada en el Cerro Cochaqasa, caserío de Vega, distrito de Anco, provincia de La Mar, departamento de Ayacucho. A una altura de 4,200 m.s.n.m.

Las rocas encajonantes son las calizas y lutitas del Grupo Tarma-Copacabana observándose en el área un intrusivo riolítico. Es un yacimiento de skarn con granates y magnetita.

Se observan cinco cuerpos que inicialmente parece haber sido uno solo, pero que por erosión fue bisectado. Tiene las siguientes dimensiones: el 1ro = 60m. x 50m.; 2do = 90m. x 15m.; 3ro = 80m. x 20m.; 4to = 130m. x 110m. y el 5to = 100m. x 40m.. Los dos primeros contienen magnetita, el tercero solo granates y los dos últimos son de granates y magnetita con predominio de los primeros. No se observaron sulfuros primarios, sólo minerales supergénicos de cobre en poca cantidad en el cuerpo 1 y abundante óxidos secundarios de Fe en los cuerpos de magnetita principalmente.

El rumbo en los cuerpos 1 y 2 es entre N 10° a 30° O y el buzamiento 55° al SO. El espesor de los cuerpos parece ser reducido.

Las labores son pequeñas y prospectivas.

MINA CHAQUIHUAYJO.-(Cu,Fe).

Se ubica entre las coordenadas UTM:

8°546,010 N
633,824 E

La mina Chaquihuayjo está localizada en el paraje Cerro Yanajanja, perteneciente al caserío Auquirajay, distrito de Anco, provincia de La Mar, departamento de Ayacucho, a una altitud de 2,800 m.s.n.m.

El yacimiento consiste en un cuerpo de forma irregular con rumbo SE-NO alcanzando 130 m. de largo y 80 m. de ancho como promedio, emplazado dentro del Grupo Tarma-Copacabana cubierto del lado SE por material de escombros y detritico.

Es un yacimiento de skarn de granates y magnetita, predominando los granates, pero la magnetita contiene especularita y escasa cantidad de chalcopirita además de óxidos de Cu secundarios.

Tanto Chaquihuayjo como Punco no parecen tener mayor importancia económica por el poco espesor que aparentan y por la escasa mineralización económica observable.
MINA ICHURUTUNA.-(Zn,Cu,Pb).

Se ubica entre las coordenadas UTM:

8’551,165 N
635,054 E

La mina esta localizada al Sur del Cerro Jatun Cruz, en el flanco derecho de la quebrada Auquirajay en el distrito de Anco, provincia de La Mar, departamento de Ayacucho sobre los 3,800 m.s.n.m..

Se trata de un manto en una serie de calizas con intercalaciones de lutitas silicificadas del Grupo Tarma-Copacabana con rumbo N 120° E y buzamiento 70°- 80° al S. La estructura sobrepasa los 2m. y su extensión visible llega a 100m. con una pendiente casi vertical de las calizas. La mineralización hacia el techo consiste de esfalerita con un poco de pirrotita y hacia el piso chalcopirita y bornita con poca esfalerita, pirita y galena. La ganga la constituye la calcita. En una muestra estudiada se reporta una ley de zinc que puede llegar a 34%.

En la misma zona Sur y Sur Este del Cerro Jatun Cruz se encuentra en forma local en las calizas diseminaciones de pirita y galena. En esta mina se puede destacar la potencia de la mineralización y las apreciables proporciones de zinc y cobre.

DENUNCIO HAYDEE I.-(Pb,Ag).

Se ubica entre las coordenadas UTM:

8’560,500 N
621,700 E

Se encuentra localizado a 2 Km de la Hda. Alvabamba en la Qda. Uchuypulaja Huayjo, anexo de Ccosccosa, distrito de San Miguel, provincia de La Mar, departamento de Ayacucho, a una altura de 3,400 m.s.n.m. y a 12 Km. en línea recta al SE de la localidad de San Miguel. El yacimiento es de tipo relleno de fisuras(vetas) con una geometría irregular en estratos de rocas sedimentarias tales como calizas y pizarras del Tarma-Copacabana que se presentan en paquetes gruesos. La mineralización se encuentra en 3 vetas de 50 a 70 cm. de potencia con galena argentífera. Solo se han realizado cateos y trincheras, el yacimiento es de tamaño pequeño. Se han cubicado reservas totales por 31,387.57 T.M con 0.30 grAu/Tc, 5.6 oz Ag/Tc, 9.9% Pb y 4.7% Zn.
DENUNCIO VIRGEN DE RAPI.- (Ag,Pb,Zn).

Sus coordenadas están ubicadas entre:
8’552,500 N
630,100 E

Se encuentra localizado en el Cerro Rapi, distrito de Anco, provincia de La Mar, departamento de Ayacucho. A una altura de 3,850 m.s.n.m.

El yacimiento es del tipo veta de geometría irregular, su tamaño es pequeño. Se han realizado cateos y trincheras. Las rocas aflorantes son andesitas, que intruyen al Grupo Tarma-Copacabana. La mineralización consiste en calcopirita, tetrahedrita, blenda, galena argentífera y como ganga pirita. Las leyes que se tiene son 7oz/Tc Ag, 12% Pb y 8% Zn.

En un reporte del Banco Minero se manifiesta que este denuncio tiene posibilidades de reservas minerales.

DENUNCIO MARIO.- (Cu,Pb,Ag).

Se ubica entre las coordenadas UTM:
8’560,132 N
616,000 E

Se encuentra localizado en el paraje Sallally-ruyacc Rumi, distrito de San Miguel, provincia de La Mar, departamento de Ayacucho a una altura de 3,400 m.s.n.m. y a 4.5 Km. al S de San Miguel.

El yacimiento es de tipo veta y de tamaño pequeño, la mineralización consiste en calcopirita y galena argentífera. Solo se han realizado cateos y trincheras. No se cuenta con datos más precisos.

DENUNCIO SAN FELIPE DE PUNQUI.- (Pb,Ag).

Se ubica entre las coordenadas UTM:
8’550,998 N
637,763 E

Se encuentra localizado en el paraje Pampantaico, anexo Punqui, distrito de Anco, provincia La Mar, departamento de Ayacucho a una altitud de 4,000 m.s.n.m., a unos 4.5 Km. al NW de la localidad de Anco.
El yacimiento presenta un cuerpo principal de forma elongada. Las rocas encajonantes son las calizas y lutitas del Grupo Tarma-Copacabana (Pensilvaniano-Permiano). La mineralización que se presenta está compuesta por galena argentífera y como ganga cuarzo. Se han realizado sólo cateos exploratorios.

7.2. SUSTANCIAS NO METALICAS.-

Entre los recursos no-metálicos del cuadrángulo solo se tiene conocimiento de dos explotaciones una de arcilla y otra de yeso que están relacionadas a la demanda local, y que solo se trabajan muy esporádicamente (en la actualidad se encuentran paralizadas). Por esta razón podemos decir que la actividad no-metálica es muy pequeña.

7.2.1. Descripción de las principales Sustancias No Metálicas.

DEPOSITO JANTAJASA.-(cly) Arcilla.

Se ubica entre las coordenadas UTM:

8’562,000 N
611,800 E

El yacimiento se localiza a 2 Km.alNE del pueblo de San Miguel en la margen izquierda del río Torobamba a una cota de 2,730 m.s.n.m., en el distrito de San Miguel, provincia de La Mar, departamento de Ayacucho.

La arcilla es de color crema con nítida laminación barbada con alternancia de capítas de 5 a 10 mm. de color beige amarillento con capítas marrón oscuras. La potencia del manto varía de 0.70 a 2.20m. y la cobertura aluvial de 0.40 a 1.50m. Los buzamientos son variables debido a las irregularidades de la paleorelieve de erosión donde fue depositada la arcilla. Según investigaciones realizadas por el ITINTEC las propiedades de la arcilla son:

- Elevado porcentaje de finos, el 99% pasa la malla 325 A.S.T.M.
- Hasta los 900-1050° C no presenta deformaciones.
- Punto de Fusión a 1,140° C.
- Buena plasticidad

Este depósito con una posición sub-horizontal se explota a cielo abierto y esporádicamente a fin de abastecer de arcilla a la localidad de la Quinua donde se mezcla con la arcilla de Tantarniyoc, mejorando la calidad de esta última. La actividad artesanal en San Miguel es muy reducida.
Con esta arcilla se pueden hacer productos utilizarios, vajillería y losetas vitrificables. Las reservas calculadas para éste depósito son del orden de las 54,000 TM.

DENUNCIO SANTA TERESA.-(Gyp) Yeso.

Se ubica entre las coordenadas UTM:

8°560,600 N
614,350 E

El denuncio se encuentra localizado en el paraje Caihuaco, distrito de San Miguel, provincia de La Mar, departamento de Ayacucho, a 3.5 Km. al SE de la localidad de San Miguel, a una altura de 3,200 m.s.n.m. El yacimiento es un manto de yeso estratíforme. Se le explota por el método de tajo abierto. Se reporta una ley de yeso de 78%. La explotación es pequeña observándose algunos cateos y trincheras.

7.3. CONSIDERACIONES ECONOMICAS.-

La actividad minera en el área de estudio estuvo concentrada en las zonas de San Miguel (lado NO) y Chiquintirca (lado NE) siendo los yacimientos de tamaño pequeño.

El interés económico principal de la zona esta dado por la mineralización polimetálica (Cu, Pb, Zn, Ag) en vetas, mantos y en forma diseminada asociada a filones de cuarzo, emplazados en el Grupo Tarma-Copacabana o en el contacto de este con cuerpos intrusivos lo cual se manifiesta en la mayoría de las ocurrencias minerales.

Es necesario realizar más labores de exploración particularmente en el Grupo Tarma-Copacabana para ampliar el conocimiento sobre el potencial minero del área, en algunos casos desarrollar perforaciones diamantinas e investigaciones geofísicas.
Foto Nº 28. Vista de la Mina Compenja. (Labor abandonada en el Cº Compenja con anomalías de Zn, Pb, Ag y Cu).

Foto Nº 29. Vista de los denuncios Cullion I y Osa Mayor que reportan anomalías polimetálicas. (Ladera Oriental del Cº Acapa).

Foto N° 31. Vista de la Mina Senjar. (Socavón abandonado e inundado; presenta valores anómalos de Cu).
Foto Nº 32. Deruncio Virgen de Rapi. (Vista panorámica del Cº Rapi).

PROSPECTOS Y MINAS EXISTENTES EN EL CUADRÂNGULO DE SAN MIGUEL

<table>
<thead>
<tr>
<th>NÚMERO DEL</th>
<th>COORDENADAS UTM</th>
<th>TIPO DE YACIMIENTO</th>
<th>MINERAL MENA</th>
<th>ESTADO</th>
<th>ROCAS POSICION</th>
<th>MINERAL GANGLA</th>
<th>ALTERACIÓN</th>
<th>LEYES</th>
<th>DIMENSIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>855.16.498</td>
<td>604.194</td>
<td>Floreano</td>
<td>Inactivo</td>
<td>Arenisca</td>
<td>Calcita</td>
<td>Glicolítico</td>
<td>1.34-31.97% Cu</td>
<td>Pequeño</td>
</tr>
<tr>
<td>2</td>
<td>855.00.098</td>
<td>562.089</td>
<td>Floreano</td>
<td>Inactivo</td>
<td>Carrera</td>
<td>Calcita</td>
<td>Glicolítico</td>
<td>3.2% Cu</td>
<td>Pequeño</td>
</tr>
<tr>
<td>3</td>
<td>855.76.174</td>
<td>621.192</td>
<td>Floreano</td>
<td>Inactivo</td>
<td>Carrera</td>
<td>Calcita</td>
<td>Glicolítico</td>
<td>2.7% Cu</td>
<td>Pequeño</td>
</tr>
<tr>
<td>4</td>
<td>855.58.357</td>
<td>430.327</td>
<td>Floreano</td>
<td>Inactivo</td>
<td>Arenisca</td>
<td>Calcita</td>
<td>Glicolítico</td>
<td>3.9% Cu</td>
<td>Pequeño</td>
</tr>
<tr>
<td>5</td>
<td>855.47.417</td>
<td>603.835</td>
<td>Floreano</td>
<td>Inactivo</td>
<td>Lutita</td>
<td>Calcita</td>
<td>Glicolítico</td>
<td>1.5% Cu</td>
<td>Pequeño</td>
</tr>
<tr>
<td>6</td>
<td>855.33.333</td>
<td>631.544</td>
<td>Cuerpo</td>
<td>Inactivo</td>
<td>Lutita</td>
<td>Calcita</td>
<td>Glicolítico</td>
<td>8.5% Cu</td>
<td>Pequeño</td>
</tr>
<tr>
<td>7</td>
<td>855.39.086</td>
<td>607.838</td>
<td>Floreano</td>
<td>Inactivo</td>
<td>Calcita</td>
<td>Calcita</td>
<td>Glicolítico</td>
<td>3.4% Cu</td>
<td>Pequeño</td>
</tr>
<tr>
<td>8</td>
<td>855.89.380</td>
<td>627.217</td>
<td>Cuerpo</td>
<td>Inactivo</td>
<td>Calcita</td>
<td>Calcita</td>
<td>Glicolítico</td>
<td>3.4% Cu</td>
<td>Pequeño</td>
</tr>
<tr>
<td>9</td>
<td>855.79.228</td>
<td>608.494</td>
<td>Cuerpo</td>
<td>Inactivo</td>
<td>Calcita</td>
<td>Calcita</td>
<td>Glicolítico</td>
<td>3.4% Cu</td>
<td>Pequeño</td>
</tr>
<tr>
<td>10</td>
<td>855.49.019</td>
<td>633.624</td>
<td>Cuerpo</td>
<td>Inactivo</td>
<td>Calcita</td>
<td>Calcita</td>
<td>Glicolítico</td>
<td>3.4% Cu</td>
<td>Pequeño</td>
</tr>
<tr>
<td>11</td>
<td>855.11.165</td>
<td>635.054</td>
<td>Floreano</td>
<td>Inactivo</td>
<td>Calcita</td>
<td>Calcita</td>
<td>Glicolítico</td>
<td>3.4% Cu</td>
<td>Pequeño</td>
</tr>
<tr>
<td>12</td>
<td>855.00.530</td>
<td>611.700</td>
<td>Cuerpo</td>
<td>Inactivo</td>
<td>Calcita</td>
<td>Calcita</td>
<td>Glicolítico</td>
<td>3.4% Cu</td>
<td>Pequeño</td>
</tr>
<tr>
<td>13</td>
<td>855.50.009</td>
<td>630.100</td>
<td>Floreano</td>
<td>Inactivo</td>
<td>Calcita</td>
<td>Calcita</td>
<td>Glicolítico</td>
<td>3.4% Cu</td>
<td>Pequeño</td>
</tr>
<tr>
<td>14</td>
<td>855.00.132</td>
<td>616.100</td>
<td>Floreano</td>
<td>Inactivo</td>
<td>Calcita</td>
<td>Calcita</td>
<td>Glicolítico</td>
<td>3.4% Cu</td>
<td>Pequeño</td>
</tr>
<tr>
<td>15</td>
<td>855.00.009</td>
<td>627.703</td>
<td>Cuerpo</td>
<td>Inactivo</td>
<td>Calcita</td>
<td>Calcita</td>
<td>Glicolítico</td>
<td>3.4% Cu</td>
<td>Pequeño</td>
</tr>
<tr>
<td>16</td>
<td>855.00.009</td>
<td>611.800</td>
<td>Cuerpo</td>
<td>Inactivo</td>
<td>Calcita</td>
<td>Calcita</td>
<td>Glicolítico</td>
<td>3.4% Cu</td>
<td>Pequeño</td>
</tr>
<tr>
<td>17</td>
<td>855.00.800</td>
<td>614.200</td>
<td>Yeso</td>
<td>Inactivo</td>
<td>Arenisca</td>
<td>Lutita</td>
<td>3% Yeso</td>
<td>Pequeño</td>
<td></td>
</tr>
</tbody>
</table>
MAPA DE UBICACIÓN DE MINAS Y PROSPECTOS

ESCALA 1 : 400,000
La evolución Geohistórica de la zona de estudio se puede resumir de la forma siguiente:

La Cuenca paleozoica en el Perú, tendría un origen intracratónico y se habría formado a consecuencia de una gran distensión ocurrida a fines del Neoproterozoico; esta gran estructura geológica sería la continuación de la cuenca de Bolivia y Norte de Argentina; Es así que después de un período de sedimentación pelítico-detrítico iniciado probablemente en el Cámbrico, le sucede un levantamiento de la cuenca hasta a fines del Ordoviciano; posteriormente en el Sillúrico la cuenca estuvo sometida a movimientos subsidentes depositándose una serie flischoide (serie del paleozoico inferior).

Posteriormente todo este paquete sedimentario es afectado por la Fase Eohercínica ocurrida entre el Devoniano Superior y el Carbonífero inferior, la cual es caracterizada como de naturaleza compresiva, originando un levantamiento y plegamiento fuerte, y consecuentemente regresión definitiva del mar.

Después de la fase compresiva ocurrida a fines del Paleozoico inferior, durante un período de subsidencia, se depositarán las series marinas Carbonífero-Pérmicas, correspondientes a los Grupos Tarma y Cópacabana, sedimentación que fue controlada por un fallamiento en bloques, de dirección NW-SE originadas por la fase distensiva Tardihercíniana, la misma que da lugar a la exposición de las unidades del Paleozoico inferior y superior, las que son sometidas a un proceso de erosión y consiguientemente a un proceso de sedimentación continental detrítica y volcánico detrítica en el Pérmico superior, siendo caracterizada por su coloración rojiza violacea, propia de la litología del Grupo Mitu.

La distensión Finiherciniana trae consigo un magmatismo manifestado en forma de plutonismo y de vulcanismo; grandes cuerpos graníticos son emplazados, y están vinculados probablemente a un sistema de fracturamiento NNW-SSE, ligados a su vez a la Fase Tardihercíniana; estos plutones afectan a la secuencia sedimentaria del Paleozoico. El vulcanismo dado es contemporáneo a la depositación de las molasas del Grupo Mitu, y su vez vinculados a una fase de distensión.
Durante el Senoniano-Paleoceno, se da una fase Tectónica denominada según G. Steinmann (1929) como “Fase Peruana”, la cual pliega las sedimentitas mesozoicas y da lugar a un levantamiento general de los Andes y consecuentemente a un retiro definitivo del mar; luego encontrándose ya en un ambiente continental, la paleogeografía se desarrolla con áreas positivas alargadas y con tendencia andina, dando origen a Cuencas intramontañosas, acumulándose en ellas depósitos molásicos continentales rojizos denominados Formaciones San Francisco y Ongoy. Es también en este período que se emplazaría probablemente el plutón granítico de San Miguel al NO del cuadrángulo, el cual intruye a la secuencia sedimentaria del Grupo Mitu.

Es en el Oligoceno o Mioceno que se inicia una gran actividad volcánica, depositándose una secuencia volcanoclástica de la Formación Ayacucho; en un ambiente de subsidencia intermitente dado en el Mioceno de la cuenca Ayacucho. Esta formación fue afectada posteriormente por la fase Quechua III, la que trae consigo deformación leve y hundimiento paulatino de la cuenca Ayacucho; luego de esta fase, al Oeste del Cuadrángulo se desarrolla una actividad magmática, emplazándose en el sector, centros eruptivos con derrames lávicos del Volcánico Lucho Jahuana Pampa (Gpo. Barroso).
RESUMEN

En el Cuadrángulo de San Miguel afloran rocas del Paleozoico inferior, Paleozoico superior-Triásico, Mesozoico y Cenozoico.

Las unidades litoestratigráficas fosilíferas del Paleozoico superior están representadas por los Grupos Tarma-Copacabana indivisos con fauna característica de braquiópodos, briozoarios y fusulínidos que le atribuyen un rango de edad que va del Carbonífero superior-Permiano inferior.

En el Mesozoico; Triásico-Jurásico (Grupo Pucará) no se han observado restos fósiles. En el Cretácico superior-Paleógeno representado por las capas rojas de la Formación Ongoy se tiene una abundante ocurrencia de oogonios de carofitas que en su totalidad son especies de afinidad Campaniano-Maastrichtiano-Paleógeno, reportadas en formaciones del Noroeste y Sureste peruano.

1.0. RELACIONES BIOESTRATIGRAFICAS

1.1. PALEOZOICO SUPERIOR

GRUPOS TARMA-COPACABANA

En el Cerro Infierniyoc, cerca al puente Pampas 13°27’26” 73°49’26”, aflora una secuencia de calizas grises de los grupos Tarma-Copacabana (indiviso), infrayaciendo las limolitas rojas del Grupo Mitu. En estas calizas se ha colectado un braquiópodo que ha sido determinado como:

Neospirifer condor (D’ORBIGNY).
BIOCRONOESTRATIGRAFÍA

Neospirifer condor (D’ORBIGNY) es un fósil diagnóstico del Carbonífero superior-Permiano inferior.

En el Perú se le reporta frecuentemente en las secuencias de calizas del Grupo Copacabana que afloran en la faja Andina Oriental, en la región subandina y Llano Amazónico. Así lo tenemos en la localidad de Huanta (Ayacucho) asociado a una abundante fauna de fusulínidos que permitieron establecer una edad Permiana inferior. También se reporta en las localidades de: Ampay NO de Apurímac, a 10 km. al N de Abancay (Newall N., Chronic R., e Iglesias, 1949) y al Este de Sicuani, Belen y Tiquina (Cuzco) asociado a *Kozlowskaia capaci* (D’ORBIGNY), *Linoproductus cora* (D’ORBIGNY) y *Sterechia inca* (D’ORBIGNY) del Permiano inferior.

1.2. CRETACEO SUPERIOR-PALEOGENO

FORMACION ONGOY

En el Cuadrángulo de San Miguel los afloramientos de la Formación Ongoy se emplazan en dirección NW-SE. Estos reducidos afloramientos están constituidos por una secuencia de limolitas verdes intercaladas con areniscas de grano fino en las cuales se tiene una abundante ocurrencia de oogonios de carofitas.

En la localidad situada al Norte de Huajana 13°21’29” 73°40’46”, las muestras colectadas, INGEMMET 2946, corresponden a la parte inferior de la Formación Ongoy compuesta por niveles de limolitas verdes y arcillitas rojas en estratos delgados de aproximadamente 15 cm. de grosor conteniendo abundantes oogonios de carofitas, determinándose:

- *Tectochara supraplana sulcata* (PECK & RECKER)
- *Tectochara supraplana supraplana* (PECK & RECKER)
- *Porochara gildemeisteri* (Koch & Blissenbach)
- *Tectochara* sp.

En estas muestras no se han observado otros tipos de organismos fósiles.

BIOCRONOESTRATIGRAFÍA

Las especies *Porochara gildemeisteri, Tectochara supraplana sulcata, Tectochara supraplana supraplana* y *Tectochara* sp. de la Formación Ongoy, constituyen una asociación frecuentemente reportada en capas rojas del Noroeste y Sureste peruano.
Así en el Norte del Perú unidades litoestratigráficas del Cretácico superior-Terciario inferior como las formaciones Sol del Cretáceo superior, Yahuarango del Cretáceo superior-Terciario inferior, Formación Huchpayacu del Cretáceo-Eoceno, Formación Arenisca de Azúcar del Campaniano-Maastrichtiano, la Formación Pozo y Formación Chambira del Oligoceno contienen Porochara gildemeisteri asociada a especies de Tectochara supraplana sulcata y Tectochara supraplana supraplana.

En el Sur del Perú la Formación Vilquechico y Palcazu del Cretáceo superior(Campaniano-Maastrichtiano) también contienen Porochara gildemeisteri.

En estas asociaciones bioestratigráficas mencionadas observamos que la especie Porochara gildemeisteri muestra una amplia distribución geográfica en el territorio peruano. Considerado fósil clave de la Formación Arenisca de Azúcar (Rosalvina Rivera, 1961) y característico no solo en estas formaciones del Cretáceo superior-Paleógeno peruano sino también de Argentina y Bolivia (Formación Yacoraite y Formación Molino), esta especie y la flora asociada nos permiten asignar a la Formación Ongoy una edad Cretáceo superior (Campaniano-Maastrichtiano)-Paleógeno.

2.0. CLASIFICACION TAXONOMICA

La clasificación taxonómica de la fauna determinada es la siguiente:

<table>
<thead>
<tr>
<th>Phylum</th>
<th>BRACHIOPODA Dumeril, 1806</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orden</td>
<td>SPIRIFERIDA Waagen, 1883</td>
</tr>
<tr>
<td>Familia</td>
<td>SPIRIFERIDAE King, 1846</td>
</tr>
<tr>
<td>Genero</td>
<td>Neospirifer FREDERIKS, 1919</td>
</tr>
<tr>
<td></td>
<td>Neospirifer condor (D’ORBIGNY)</td>
</tr>
<tr>
<td>Clase</td>
<td>CHAROPHYTA</td>
</tr>
<tr>
<td>Orden</td>
<td>CHARALES</td>
</tr>
<tr>
<td>Familia</td>
<td>CHARACEAE</td>
</tr>
<tr>
<td>Genero</td>
<td>Tectochara GRAMBAST, 1954</td>
</tr>
<tr>
<td></td>
<td>Tectochara supraplana sulcata (PECK & RECKER)</td>
</tr>
<tr>
<td></td>
<td>Tectochara supraplana supraplana (PECK & RECKER)</td>
</tr>
<tr>
<td></td>
<td>Tectochara sp.</td>
</tr>
<tr>
<td>Genero</td>
<td>Porochara MAEDLER, 1955</td>
</tr>
<tr>
<td></td>
<td>Porochara gildemeisteri</td>
</tr>
<tr>
<td></td>
<td>KOCH & BLISSENBACH</td>
</tr>
</tbody>
</table>

129
3.0. PALEOECOLOGIA

Las facies sedimentarias y fósiles de los Grupos Tarma-Copacabana son propios de mares epicontinentales de aguas cálidas.

Las facies sedimentarias de la Formación Ongoy, indican que los materiales se depositaron por acción fluvial bajo condiciones de oxidación en un ambiente árido. La presencia de abundantes oogonios de carofitas nos sugieren ambientes lacustres someros que se desarrollaron en las llanuras de inundación.
LÁMINA

PALEONTOLÓGICA
LAMINA I

Foto n°1 Neospirifer condor D’ORBIGNY
 1a. vista ventral 1.1X
 1b. vista dorsal 1.1X
 1c. vista posterior 1.1X
 INGEMMET.-2947
 Unidad litoestratigráfica.- Grupo Copacabana
 Edad.- Permiano inferior

Foto n°2,3 Porochara gildemeisteri KOCH & BLISSENBACH
 2a,3a. vista del oogonio 55X
 2b.-vista del poro apical 55X
 3b. vista del poro basal 55X
 INGEMMET.- 2947
 Unidad litoestratigráfica.- Formación Ongoy
 Edad.- Campaniano-Maastrichtiano-Paleógeno

Foto n°4 Tectochara supraplana sulcata (PECK & RECKER) 55x
 INGEMMET.- 2946
 Unidad litoestratigráfica.- Formación Ongoy
 Edad.- Campaniano-Maastrichtiano-Paleógeno

Foto n°5 Tectochara sp. 55x
 INGEMMET.- 2946
 Unidad litoestratigráfica.- Formación Ongoy
 Edad.- Campaniano-Maastrichtiano-Paleógeno

Foto n°6 Tectochara supraplana supraplana (PECK & RECKER) 55x
 INGEMMET.- 2946
 Unidad litoestratigráfica.- Formación Ongoy
 Edad.- Campaniano-Maastrichtiano-Paleógeno
Geología del Cuadrángulo de San Miguel
AGRAMONTE, J.; GRIFFO, J. & ROSPIGLIOSI, C. (1979) - Reconocimiento geológico de los yacimientos no metálicos del departamento de Ayacucho. Informe Ingemmet

INSTITUTO GEOLOGICO MINERO Y METALURGICO Perú - Sinopsis del Mapa Tectónico del Perú

MAROCCO, R. (1977) - Geologie des Andes Peruvienes Un Segment E.W. de la chaine des Andes Peruvienes: La Deflexion d’ Abancay - Etude geologique de la Cordillere Orientale et des haust plateaux entre Cuzco et San Miguel (Sud du perou 12°30’ S a 14°00’). Académie de Montpellier, Université des Sciences et Tecniques du Languedoc.

NEWELL, N. D. (1948) - Geology of the Lake Titicaca Region, Peru and Bolivia. Geol. Soc. Amer. Mem. 36.

SOULAS, J.P. (1977) - Las fases Tectónicas del Terciario superior en el Perú, corte Ayacucho - Pisco. Boletín de la Sociedad Geológica del Perú, Lima, p. 57:58, 59-72,
Grupo Mitu: Secuencia conglomerática grano decreciente. Región de Mara-Mara. La secuencia tiene una potencia de 80 metros.