Neotectónica y Peligro Sísmico en la Región Cusco

Boletín N° 55 Serie C
Geodinámica e Ingeniería Geológica

Por:
Carlos Benavente Escobar
Fabrizio Delgado Madera
Edu Taipe Maquerhua
Laurence Audín
Walter Pari Pinto

Lima, Perú
2013
Neotectónica y Peligro Sísmico en la Región Cusco

Por:
Carlos Benavente Escobar
Fabrizio Delgado Madera
Edu Taipe Maquerhua
Laurence Audin
Walter Pari Pinto

Lima, Perú
2013
SERIE C GEOLOGÍA AMBIENTAL Y RIESGO GEOLÓGICO,
Nº 55, 2013.

Hecho el Depósito Legal en la Biblioteca Nacional del Perú Nº 2014-02295
 Razón Social: Instituto Geológico Minero y Metalúrgico
 (INGEMMET)
 Domicilio: Av. Canadá Nº 1470, San Borja, Lima, Perú
 Primera Edición, INGEMMET 2014
 Se terminó de imprimir el 14 de febrero del año 2014 en los
 talleres de INGEMMET.

© INGEMMET
 Derechos Reservados. Prohibida su reproducción

Presidente del Consejo Directivo: Susana Vilca
 Secretaria General: Elizabeth Ramos

Comité Editor: Susana Vilca, Lionel Fidel, Víctor Carlotto,
 Jorge Chira, Rocío Morris

Dirección encargada del estudio: Dirección de Geología
 Ambiental y Riesgo Geológico

Unidad encargada de edición: Unidad de Relaciones
 Institucionales.

Corrección Geocientífica: Carlos Costa y Etienne Jaillard
 Digitalización y SIG: Carlos Benavente, Fabrizio Delgado y
 Julio Lara
 Corrección gramatical y de estilo: María Obregón
 Diagramación: Zoila Solis

Portada: Mapa Neotectónico de la Región Cusco y Nevado
 Qolqe Punku, en cuyas faldas se ubica el Santuario del Señor de
 Qoyllority

Referencia bibliográfica
Benavente, C.; Delgado, F.; Taipe, E.; Audin, L. & Pari, W.
 (2013) - Neotectónica y peligro sísmico en la región del Cusco,
 INGEMMET. Boletín, Serie C: Geología Ambiental y Riesgo
 Geológico, 55, 245 p., 1 mapa.
Contenido

RESUMEN ... 1

CAPÍTULO I
INTRODUCCIÓN ... 3

CAPÍTULO II
CONTEXTO GEOMORFOLÓGICO Y GEOLÓGICO ... 9

CAPÍTULO III
ESTRATIGRAFÍA Y REGISTROS DE SISMICIDAD EN LA CUENCA CUATERNARIA CUSCO ... 19

CAPÍTULO IV
NEOTECTÓNICA, TECTÓNICA CUATERNARIA Y ACTIVA .. 45

CAPÍTULO V
GEOFÍSICA APLICADA: TOMOGRAFÍA ELÉCTRICA .. 139

CAPÍTULO VI
FENÓMENOS SECUNDARIOS DETONADOS POR SISMOS ... 151

CAPÍTULO VII
MAPAS DE AMENAZA SÍSMICA ... 173

CAPÍTULO VIII
GEODESIA ... 219

CONCLUSIONES ... 233

BIBLIOGRAFÍA ... 235
El volcán Ubinas se encuentra localizado en el departamento de Moquegua, a 60 km al este de la ciudad de Arequipa. Es considerado el más activo del Perú por sus 24 eventos volcánicos, registradas desde el siglo XVI hasta la actualidad. La recurrente actividad ha generado en ese lapso considerables daños en los poblados localizados alrededor del volcán, contaminando terrenos de cultivo y causando la muerte de algunas personas y un número no preciso de ganado, a consecuencia de epidemias desconocidas.

Los antecedentes mencionados no se tomaron en cuenta para instalar un permanente sistema de monitoreo volcánico, a fin de formular un plan de contingencia y preparación de la población. Ello se hizo evidentemente necesario cuando se presentó la crisis volcánica en los meses de marzo e inicios de abril de 2006. En dicha oportunidad –y pese a los antecedentes históricos– el volcán Ubinas no contaba con un sistema de monitoreo volcánico continuo. Además, los pobladores del valle de Ubinas, que suman aproximadamente 3500 personas, tenían poco o ningún conocimiento del fenómeno y sus peligros asociados. Asimismo, las autoridades no contaban con un plan de contingencia ni con experiencia para hacer frente a la crisis volcánica.

El 27 de marzo de 2006, el volcán Ubinas comenzó a emitir cenizas de manera leve, las que cayeron sobre la localidad de Querapi, que se encuentra a 4 km al sur del volcán y donde habitan 42 familias. El 1 de abril de 2006 se produjo la primera explosión y durante los días siguientes se incrementó de manera importante la actividad volcánica y las cenizas emitidas alcanzaron entre 1000 y 3500 m de altura sobre el cráter. Desde mayo hasta agosto de 2006, la actividad se mantuvo constante. Se produjeron repetidas caídas de cenizas, así como explosiones volcánicas violentas que arrojaron fragmentos de lava. A partir de septiembre de 2006, la actividad volcánica fue disminuyendo drásticamente, las explosiones volcánicas se hicieron más esporádicas y el volumen de cenizas emitidas fue mucho menor. Este tipo de actividad disminuyó en el 2007, y prácticamente cesó en el 2009.

Con el propósito de monitorear la actividad volcánica, se constituyó un Comité Científico - creado mediante resolución N.º3768-2006-INDECI/11.0- el mismo que estuvo integrado por el INGEMMET, el IGP y la UNSA.

Las primeras caídas de cenizas registradas en el valle de Ubinas afectaron al poblado de Querapi. Por esta razón, en una primera fase y de manera inmediata (20 de abril), las autoridades realizaron la evacuación de este poblado al refugio de Anascapa. El 3 de junio de 2006, el Comité Científico emitió el Comunicado N.º 8, donde recomienda al Sistema Regional de Defensa Civil de Moquegua (SIREDECI-Moquegua) elevar el nivel de alerta al color «naranja», ante el incremento de la actividad volcánica. En base a las recomendaciones emitidas, el SIREDECI-Moquegua toma la decisión de implementar la evacuación preventiva de los pobladores de las localidades de Tonohaya, San Miguel, Huatahuac, Ubinas y Escacha, hacia el refugio de Chacchagén. El proceso de evacuación se llevó a cabo en dos etapas: en la primera etapa se evacuó a los pobladores de Tonohaya, San Miguel y Huatahuac, el 9 de junio de 2006; en una segunda etapa se evacuó a los pobladores de Ubinas y Escacha, el 10 y 11 de junio del mismo año. En total se evacuó a cerca de 1356 personas. Los refugiados permanecieron en el albergue de Chacchagén durante más de un año, luego del cual fueron retornando a sus lugares de origen de manera progresiva, ante la disminución de la actividad eruptiva. Un censo realizado por el Comité Regional de Defensa Civil de Moquegua (CRDC-Moquegua), en diciembre de 2006, arrojó que en total permanecían en el albergue cerca de 832 personas.

Para atender a los afectados por la crisis volcánica, se implementaron refugios en Anascapa y Chacchagén. El refugio de Chacchagén albergó a más del 95% de la población evacuada. Durante una primera etapa en el albergue de Chacchagén se armaron 315 carpas, 137 módulos de vivienda, más de 40 letrinas (posos ciegos), un relleno sanitario y reservorios de agua. En una segunda etapa se construyeron el centro de salud, comedores, duchas, aulas, áreas de esparcimiento para niños, y se instalaron los sistemas de luz y telecomunicaciones. Los refugios fueron implementados considerando la Carta Humanitaria y las Normas Mínimas de respuesta en caso de desastre, considerados en el Proyecto Esfera. Por las características y servicios brindados en el refugio de Chacchagén, este es considerado uno de los mejor implementados en el mundo para atender crisis volcánicas.

Es importante destacar que la gestión de la crisis volcánica fue compleja y difícil, ya que la erupción causó pánico en los pobladores.
La región del Cusco se ubica en la zona suroriental del territorio peruano entre 11°13'19''-72°59'52'' y 15°20'25''-70°00'36''. Abarca áreas correspondientes a la cordillera Occidental, Altiplano, cordillera Oriental, frente orogénico y llanura amazónica, cubriendo un área de 71 987 km². Su territorio está demarcado políticamente en 13 provincias y 108 distritos.

Presentamos un boletín en el cual ponemos en evidencia deformaciones Plio-cuaternarias relacionadas con la evolución neotectónica de la región del Cusco. La neotectónica es una ciencia que estudia las últimas deformaciones de la corteza terrestre con la finalidad de entender la evolución geodinámica reciente de cadenas montañosas y de determinar áreas de amenaza sísmica a partir de la evaluación del potencial sismogénico de una falla.

En el contexto sismotectónico andino, se considera que las fallas con antecedentes sísmicos durante el Cuaternario (<2.5 millones de años), son las que concentran mayores posibilidades de generar movimientos sísmicos futuros. Por consiguiente, el conocimiento de las mismas es relevante para una correcta tipificación del potencial sísmico de una región.

Fuentes históricas demuestran que la región del Cusco fue altamente afectada por sismos de magnitudes elevadas, llegando en muchos casos a la pérdida de vidas humanas y a dañar parte o la totalidad de viviendas. En consecuencia, la importancia de realizar estudios detallados de las deformaciones Plio-cuaternarias, fallas y pliegues, consideradas como estructuras sismogénicas y de los efectos inducidos por la sismicidad, son estudios que se constituyen como vitales para la caracterización de la amenaza sísmica de la región y su posterior contribución como herramienta fundamental en los Planes de Ordenamiento Territorial (POT).

Geomorfológicamente, la región del Cusco está constituida por diversos pisos altitudinales, fuertes pendientes, desniveles y formaciones geológicas heterogéneas que determinan la concurrencia de variados y complejos patrones geomorfológicos en distancias muy cortas; aunándose a ello la historia morfogenética, la cual atravesó diversos episodios geológicos basados en la interacción entre la actividad tectónica y el clima, trayendo consigo la profunda disección de los valles de los ríos Mapacho, Vilcanota y Apurímac, entre otros. Según la Carta Geológica Nacional-INGEMMET, en la región afloran rocas desde el Neoproterozoico hasta cuaternarios.

En base a trabajos de campo y gabinete, ponemos en evidencia más de 55 estructuras Plio-cuaternarias, permitiéndonos proponer una redefinición de los sistemas de fallas Plio-cuaternarias, entre los más importantes tenemos: sistema de fallas Zurite-Cusco-Urcos-Sicuani; sistema de fallas Casacunca-Acomayo-Langui-Layo; sistema de fallas Chinchapijuyo-Paruro-Acomayo; sistema de fallas Ocongate; sistema de fallas del río Vilcanota; sistema de fallas de la cordillera Oriental y fallas de la zona subandina; estas estructuras presentan direcciones preferenciales NO-SE y E-O en el sector donde la cadena andina hace un deflexión. Los escarpes de fallas son evidentes, ya que afectan depósitos cuaternarios, generando desplazamientos verticales de hasta de 200 metros y sugiriendo la acumulación de eventos sísmicos, mayores a 6 grados de magnitud; que en algunos casos están también expresados en la acumulación de cuñas coluviales y en la estratigrafía cuaternaria, como por ejemplo en la cuenca Cusco donde identificamos y estudiamos estructuras sedimentarias deformadas asociadas a sismos.

Los sismos pueden producir una serie de efectos inducidos, que dan lugar a grandes deformaciones y rupturas del terreno, como son los fenómenos de movimientos en masa y los fenómenos de licuefacción de suelos. Dentro de los movimientos en masa inventariados en la región del Cusco, 86 fueron detonados probablemente por sismos, y 33 zonas son susceptibles a procesos de licuefacción de suelos. Los estudios detallados de las fallas nos permitieron generar mapas de amenaza sísmica para movimientos en masa y procesos de licuefacción de suelos y/o asentamientos. Estos mapas, se calcularon a partir de las interacciones entre los mapas de susceptibilidad (a movimientos en masa y a procesos de licuefacción de suelos y/o asentamientos) y los mapas de iso-aceleraciones sísmicas deducidos de la magnitud máxima posible que una falla activa puede generar, para posteriormente elaborar los mapas de peligrosidad de movimientos en masa y procesos de licuefacción de suelos y/o asentamientos detonados por sismos; estos análisis se efectuaron para las fallas activas de Tambomachay, Qoricocha, Pachatusan, Paruro y Amaru, determinando el grado de
peligrosidad alta, media y baja. Asimismo, empleamos el método de resistividad por tomografía eléctrica en las fallas que no presentan una buena expresión morfológica (por actividad antrópica) y que se ubican adyacentes a poblados y ciudades con la finalidad de caracterizar la estructura a profundidad.

Finalmente, con el objetivo de cuantificar y vectorizar la deformación nos encontramos implementando una red geodésica temporal tanto en fallas cuaternarias como deslizamientos. Los primeros resultados de los GPS indican deformación local en las zonas adyacentes a la ciudad del Cusco, con un campo de velocidades que indican desplazamientos entre 9 hasta 27 mm/año en la componente horizontal, indicando una partición de esfuerzos que se acomodan a movimientos normales con componente transcurrente, movimientos coherentes con la dirección de convergencia de placas. Asimismo, este estilo de deformación nos indica un estado actual de acumulación de deformación, que continuará hasta su posterior bloqueo y reactivación, que se traducirá en sismicidad con ruptura superficial. La continuidad de toma de datos geodésicos nos permitirá determinar la zona de bloqueo o zona acoplada y así precisar el área de ruptura.

Los resultados en el estudio geodésico del deslizamiento de Cuyo Chico indican que el movimiento horizontal, en un periodo de cuatro años, es de 3.7 metros en la parte distal del mismo, con una orientación E-O, constituyéndose así en un proceso geológico que podría causar daños en un futuro próximo a las localidades de Cuyo Chico, Cotataque y Ampay, pertenecientes a la provincia de Calca.
CAPÍTULO I
INTRODUCCIÓN

Una de las líneas de investigación que se viene desarrollando en el INGEMMET, son los estudios de neotectónica y paleosismología, estos tienen por finalidad contribuir al conocimiento de la evolución geodinámica reciente de la cadena andina, llegando a determinar áreas tectónicamente activas y su relación con el peligro sísmico.

El Perú se ubica en la margen activa del continente sudamericano debido al proceso de la subducción, donde la placa oceánica se introduce por debajo de la placa continental, dando lugar a la actividad tectónica y consecuente sismicidad. En el contexto sismotectónico andino, se considera que las estructuras geológicas con antecedentes sísmicos durante el Cuaternario (<2.5 millones de años), son las que concentran mayores posibilidades de generar movimientos sísmicos futuros. Este intervalo, sin duda, comprende varias veces los períodos de recurrencia de las estructuras con potencial sismogénico. **Consecuentemente, el conocimiento de las mismas es relevante para una correcta tipificación del potencial sísmico de una región.**

Existe amplio consenso en la comunidad científica, sobre la base de datos empíricos, de que los terremotos de magnitud M>6.5 y profundidades menores de 30 kilómetros producen comúnmente deformaciones en la superficie topográfica (Slemmons, 1977; Wallace, 1981; Bonilla, 1988; McCalpin, 1996; Wells & Coppersmith, 1994; Yeats et al., 1997). Estas deformaciones resultan evidencias que pueden preservarse en la morfología del terreno, también en el arreglo y composición de los materiales aledaños a la zona de deformación.

Del tal forma, el presente trabajo constituye un estudio integral, donde en base a análisis geomorfológicos, estratigráficos, de geología estructural y utilización de métodos geofísicos proponemos una evolución geodinámica reciente para la región, asimismo ponemos en evidencias de actividad tectónica cuaternaria y activa, gran parte de ellas consideradas como hitos. Finalmente proponemos una nueva metodología para la evaluación de la peligrosidad a los movimientos en masa detonados por sísmos, a partir de las características estructurales de las fallas activas y con datos de geodésia obtenidos con nuestros GPS diferenciales.

UBICACIÓN

La región del Cusco está ubicada en la zona surooriental del territorio peruano; limita por el norte con los departamentos de Junín y Ucayali, por el oeste con la selva de Ayacucho y la sierra de Apurímac, por el sur con las zonas altas de Arequipa y Puno, y por el este con el llano amazónico de Madre de Dios (Figura 1.1); tiene como extremos las coordenadas geográficas consignadas en el Cuadro 1.1.

<table>
<thead>
<tr>
<th>Orientación</th>
<th>Norte</th>
<th>Este</th>
<th>Sur</th>
<th>Oeste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitud sur</td>
<td>11°13’19”</td>
<td>13°00’00”</td>
<td>15°20’25”</td>
<td>12°16’30”</td>
</tr>
<tr>
<td>Longitud oeste</td>
<td>72°59’52”</td>
<td>70°21’41”</td>
<td>70°00’36”</td>
<td>73°57’45”</td>
</tr>
</tbody>
</table>

Fuente: INEI, 2003

La región se encuentra dominada por la cordillera de los Andes que ocupa el 56 % de su territorio, abarcando zonas de sierra y selva; la zona andina presenta aspectos de montañas elevadas y altas mesetas, que se encuentran bordeadas de profundas quebradas por las que discurren los ríos, formando valles y cañones; la zona de la selva se ubica al este de estas elevaciones y se caracterizan por tener geoformas menos empinadas cubiertas de vegetación, donde reina el clima cálido.

Por presentar una geomorfología variada, su altitud oscila entre los 332 m.s.n.m., que viene a ser el punto más bajo ubicado en el...
Figura 1.1 Mapa de ubicación. La imagen satelital muestra coloraciones verdes que comprende la zona de selva y en tonalidades marrones las partes alto andinas constituidas por montañas de la Cordillera Occidental, Oriental y Altiplano.
distrito de Picopata, y los 6372 m.s.n.m., pico del nevado Ausangate en el distrito de Ocongate.

La región Cusco abarca un área de 71 987 km², que representa el 5.6 % del territorio nacional, y es la cuarta región en extensión territorial después de Loreto, Ucayali y Madre de Dios; presenta una densidad poblacional de 16.3 hab./km² (Fuente: INEI, 2007).

Su territorio está demarcado políticamente en 13 provincias y 108 distritos. Las ciudades importantes que tiene la región son: Cusco (capital de la región), Pisac, Calca, Urubamba, Acomayo, Paruro, Espinar, Ollantaytambo, Quillabamba, Paucartambo y Sicuani. Se destacan económicamente por la producción de papa, yuca, maíz, café, frutas (plátano, naranja), cebada, haba, cebolla, etc., también por la afluencia de turistas que llegan de todas partes del mundo para visitar los distintos complejos arqueológicos que se encuentran en los alrededores de la ciudad del Cusco y, principalmente, para visitar el Santuario de Machupicchu.

OBJETIVOS

Los objetivos principales de nuestro estudio fueron:

a) Realizar estudios de neotectónica con la finalidad de identificar y estudiar evidencias de tectónica cuaternaria y activa, así como evidencias de paleosismicidad mediante técnicas multidisciplinarias, incluyendo geología estructural, geomorfología, estratigrafía y sedimentología, técnicas que constituyen parte del campo de la neotectónica, del estudio de la geología de terremotos y de la paleosismología. Esta información permite estimar con precisión la variable de recurrencia y tamaño de eventos prehistóricos y, por lo tanto, permite reconstruir el registro sísmico pasado.

b) Desarrollar una nueva metodología para la evaluación de la peligrosidad a los movimientos en masa y a los procesos de liquefacción de suelos y/o asentamientos inducidos por sismos a escala regional, siendo el principal objetivo identificar áreas con fenómenos naturales potencialmente dañinos para la sociedad y tener una idea de la probabilidad de ocurrencia de dichos fenómenos frente a distintos escenarios.

c) Cuantificar el movimiento de peligros geológicos activos utilizando métodos geodésicos.

d) Contribuir al conocimiento de la evolución geodinámica reciente de los Andes peruanos.

En consecuencia, el estudio de las deformaciones cuaternarias aporta datos sobre las deformaciones prehistóricas de fallas consideradas sismogénicas y de los efectos inducidos por la sismicidad, los cuales son vitales para la caracterización de la amenaza sísmica, lo que es importante para el ordenamiento territorial de una región.

ANTECEDENTES

En 1982, sobre la base del Mapa Geológico del Perú, 1:1 000 000 (INGEMMET, 1978), y el Mapa Tectónico del Perú a escala 1:2 000 000 (INGEMMET, 1981), se trazó el primer Mapa Neotectónico del Perú 1:2 000 000. Estos trabajos fueron realizados por Sébrier et al. (1982), en el marco del proyecto Sismicidad y Riesgos Sísmicos de la Región Andina (SISRA) promovido por el Centro Regional de Sismología para América del Sur (CERESIS).

En el 2003, como parte del proyecto «Major Active Faults of the World» del International Lithosphere Program, se tuvo como resultado un mapa con localización digital a escala de publicación 1:5 000 000, cuyo procesamiento de datos fue en ARC INFO en las oficinas del Servicio Geológico de los Estados Unidos (USGS).

Entre los años 2006-2007, el Instituto Geológico Minero y Metalúrgico (INGEMMET) estableció como una nueva actividad institucional el estudio de fallas activas. Los investigadores principales por el INGEMMET fueron el Dr. José Macharé y el Ing. Carlos Benavente, y por el Instituto Francés de Investigación para el Desarrollo en Cooperación (IRD) fue la Dra. Laurence Audin. Desde entonces nuestro trabajo se viene plasmando en tesis, artículos geocientíficos e informes.

El 2009 presentamos una nueva versión del Mapa Neotectónico del Perú a escala 1:2 000 000, con una nueva y precisa cartografía, las fallas que habían quedado con pobre localización, se ubicaron en un Sistema de Información Geográfica (GIS). Asimismo, se compiló la información generada por terceros y se agregó nueva información generada durante los trabajos de campo y gabinete por los miembros del equipo. Este mapa forma parte de la contribución al Proyecto Neotectónica del Proyecto Multinacional Andino-Geociencias para las Comunidades Andinas (PMA-GCA).

En el siguiente trabajo presentamos por primera vez un Mapa Neotectónico Regional a escala 1:500 000, donde el cartografiado de las estructuras cuaternarias se realizaron en bases topográficas a escala 1:25 000, 1:10 000 e imágenes satelitales con resoluciones de 30, 10 y 5 metros.

METODOLOGÍA

La metodología empleada para el presente estudio consta de tres etapas de trabajo distribuidas de la siguiente forma:
Gabinete I

Los trabajos de gabinete o preliminares consistieron en:

- Recopilación de información bibliográfica y su posterior evaluación.
- Recopilación de información cartográfica (mapas topográficos a escala 1:50 000 y algunos a escala 1:25 000 y 1:10 000), fotografías aéreas e imágenes satelitales.
- Generación de la cartografía básica, delimitando el área de estudio.
- Análisis y fotointerpretación de estructuras por medio de fotografías aéreas e imágenes satelitales.
- Generación de mapas preliminares para su respectiva comprobación en campo.

Campo

Los trabajos de campo se efectuaron en diferentes etapas; en dichas salidas se realizaron las siguientes actividades:

- Cartografiado geológico-estructural en mapas topográficos a escala 1:25 000 y 1:10 000 con énfasis en los depósitos cuaternarios, llegando a reconocer depósitos de flujos de detritos (aluviones o huaycos) de clastos de gran diámetro, conglomerados fluviales de gran espesor, depósitos fluvioglaciares y glaciares.
- Identificación de fallas que afectan depósitos recientes, en estas realizamos análisis morfo-estructurales, con énfasis en la medición de estrías en planos de fallas.
- Realización de trincheras paleosismológicas transversales a las fallas con la finalidad de identificar paleosismos.
- Levantamiento de columnas estratigráficas en los alrededores de la cuenca cuaternaria del Cusco, con la finalidad de identificar niveles deformados provocados o asociados a sismos.
- En la zona de estudio se analizó la relación de la tectónica reciente y su morfología (análisis morfotectónico). Para ello utilizamos imágenes ASTER (1:50 000 a 1:15 000), LANDSAT (1:50 000) y fotografías aéreas (1:25 000). Así como también se utilizó la carta geológica elaborada por el INGEMMET a escala 1:50 000.
- Monitoreo geodésico con la finalidad de cuantificar el movimiento, deformación y velocidad media de desplazamiento de peligros geológicos.

Gabinete II

Los trabajos en gabinete II o también llamados trabajos finales, han consistido en:

- Digitalización y composición de mapas temáticos finales de factores: estructural, litológico, geomorfológico, de pendientes, cobertura vegetal y uso de suelo.
- Integración de mapas temáticos y análisis de susceptibilidad, elaboración de mapas de susceptibilidad por movimientos en masa y procesos de lúcefacción de suelos y/o asentamientos.
- Elaboración de mapas de peligrosidad, utilizando como factor detonante los sísmos máximos posibles que las fallas pueden generar y tomando en cuenta la aceleración sísmica y su atenuación respecto a la distancia epicentral.
- Elaboración de cuadros, figuras, selección de fotografías ilustrativas y redacción de memoria descriptiva del informe final.

CLIMA Y DIVERSIDAD BIOLÓGICA

Clima

Las características climáticas de la región del Cusco son tan variadas que confieren un gran potencial de recursos naturales. Para su monitoreo existen 13 estaciones meteorológicas distribuidas en toda la región (SENAMHI-Servicio Nacional de Meteorología e Hidrología). Para el análisis del clima y para una mejor descripción separamos de acuerdo al régimen de temperaturas y de precipitación, información tomada de SENAMHI.

a) Régimen de temperaturas: En la zona de la selva baja, el clima es cálido y húmedo; la temperatura media máxima varía entre 31.92 °C para setiembre, 30.04 °C para marzo y un promedio general anual de 30.52 °C; la temperatura media mínima varía entre 15.49 °C para julio, 19.66 °C para febrero y una media anual de 18.47 °C. La precipitación pluvial varía entre un máximo de 231 milímetros en febrero y 35 milímetros en julio, haciendo un total de 1730 milímetros.

En la zona de la selva alta el clima es cálido y muy húmedo. La temperatura promedio anual alcanza los 23 °C, un máximo de 25 °C en enero y 22 °C en julio.

En las zonas de valles interandinos se presenta un clima de transición entre el clima templado quechua y el clima frío de puna. La temperatura media anual es de 19.4 °C, la temperatura media mínima es de 6.8 °C, siendo el mes más frígido julio con 0.8 °C. La precipitación anual es de 716 milímetros distinguiéndose dos estaciones bien diferenciadas, una de período de lluvias entre octubre y abril, y otra de período seco entre mayo y setiembre.

En la zona altoandina el clima es subhúmedo y frío, la temperatura media máxima varía entre 16.6 °C para noviembre y 15.2 °C para agosto, siendo el promedio anual de 15.7 °C. Las temperaturas
medias mínimas varían entre 1.5 °C para el mes de julio y 12.4 °C para el mes de febrero, siendo su promedio anual de 6.3 °C. En esta zona se presentan las heladas.

b) Régimen de precipitación: En la región, el período lluvioso se presenta de 5 a 7 meses. En la Amazonía se inicia entre setiembre y noviembre, y finaliza entre marzo y mayo. La precipitación porcentual acumulada de estos períodos alcanza valores entre 58.06 % (Pilcopata) y 81.09 % (Echarati) del total de la precipitación.

En la mayor parte de la sierra las precipitaciones se dan entre los meses de noviembre a marzo y la precipitación porcentual acumulada de estos períodos alcanzan valores entre 66.88 % (Paucartambo) y 86.96 % (Paruro) del total de la precipitación anual.

Diversidad biológica

La región del Cusco por su condición andino-amazónica, posee una diversidad de pisos ecológicos y ecosistemas que incluyen diversos tipos de bosques, praderas, montes bajos y pisos elevados. Estos biomas incluyen también las comunidades de agua dulce asociadas: corrientes, lagos, estanques y humedales, que son el hogar de miles de especies, de animales y plantas como las orquídeas, constituyendo un gran potencial para el desarrollo de actividades agrarias compatibles (bio y eco-negocios).

Entre los principales recursos de la biodiversidad regional aprovechados por los productores agrarios, se cuenta a los camélidos americanos, incluyendo la vicuña y el guanaco, patos silvestres, tubérculos y cereales andinos, frutas nativas, hongos y líquenes comestibles, plantas medicinales, madera, entre otros, cuya cuantificación en la mayoría de los casos no está registrada.

La agricultura migratoria, los incendios forestales, el sobrepastoreo, la extracción forestal, la urbanización y construcción de infraestructura de comunicación, erosión eólica y pluvial, etc., están eliminando muchas especies irreemplazables. En la sierra, están en situación de vulnerabilidad o en peligro de extinción: el guanaco, el suri, la vicuña, el puma, el cóndor y el gato montés. En la selva se encuentran en la misma situación el oso de anteojos, el otorongo, el lobo de río, el mono tocón, el guacamayo, entre otros.

AGRADECIMIENTOS

Queremos reiterar nuestro sincero agradecimiento a Carlos Costa y Etienne Jaillard por los comentarios, sugerencias y charlas que contribuyeron en la realización del presente trabajo. También nuestro reconocimiento a Xavier Robert, Stéphane Schwartz y Céline Beauval.
El volcán Ubinas se encuentra localizado en el departamento de Moquegua, a 60 km al este de la ciudad de Arequipa. Es considerado el más activo del Perú por sus 24 eventos volcánicos, registradas desde el siglo XVI hasta la actualidad. La recurrente actividad ha generado en ese lapso considerables daños en los poblados localizados alrededor del volcán, contaminando terrenos de cultivo y causando la muerte de algunas personas y un número no preciso de ganado, a consecuencia de epidemias desconocidas. Los antecedentes mencionados no se tomaron en cuenta para instalar un permanente sistema de monitoreo volcánico, a fin de formular un plan de contingencia y preparación de la población. Ello se hizo evidentemente necesario cuando se presentó la crisis volcánica en los meses de marzo e inicios de abril de 2006. En dicha oportunidad –y pese a los antecedentes históricos– el volcán Ubinas no contaba con un sistema de monitoreo volcánico continuo. Además, los pobladores del valle de Ubinas, que suman aproximadamente 3500 personas, tenían poco o ningún conocimiento del fenómeno y sus peligros asociados. Asimismo, las autoridades no contaban con un plan de contingencia ni con experiencia para hacer frente a la crisis volcánica. El 27 de marzo de 2006, el volcán Ubinas comenzó a emitir cenizas de manera leve, las que cayeron sobre la localidad de Querapi, que se encuentra a 4 km al sur del volcán y donde habitan 42 familias. El 1 de abril de 2006 se produjo la primera explosión y durante los días siguientes se incrementó de manera importante la actividad volcánica y las cenizas emitidas alcanzaron entre 1000 y 3500 m de altura sobre el cráter. Desde mayo hasta agosto de 2006, la actividad se mantuvo constante. Se produjeron repetidas caídas de cenizas, así como explosiones volcánicas violentas que arrojaron fragmentos de lava. A partir de septiembre de 2006, la actividad volcánica fue disminuyendo drásticamente, las explosiones volcánicas se hicieron más esporádicas y el volumen de cenizas emitidas fue mucho menor. Este tipo de actividad disminuyó en el 2007, y prácticamente cesó en el 2009. Con el propósito de monitorear la actividad volcánica, se constituyó un Comité Científico - creado mediante resolución N.º3768-2006-INDECI/11.0- el mismo que estuvo integrado por el INGEMMET, el IGP y la UNSA. Las primeras caídas de cenizas registradas en el valle de Ubinas afectaron al poblado de Querapi. Por esta razón, en una primera fase y de manera inmediata (20 de abril), las autoridades realizaron la evacuación de este poblado al refugio de Anascapa. El 3 de junio de 2006, el Comité Científico emitió el Comunicado N.º 8, donde recomienda al Sistema Regional de Defensa Civil de Moquegua (SIREDECI-Moquegua) elevar el nivel de alerta al color «naranja», ante el incremento de la actividad volcánica. En base a las recomendaciones emitidas, el SIREDECI-Moquegua toma la decisión de implementar la evacuación preventiva de los pobladores de las localidades de Tonohaya, San Miguel, Huatahua, Ubinas y Escacha, hacia el refugio de Chacchagén. El proceso de evacuación se llevó a cabo en dos etapas: en la primera etapa se evacuó a los pobladores de Tonohaya, San Miguel y Huatahua, el 9 de junio de 2006; en una segunda etapa se evacuó a los pobladores de Ubinas y Escacha, el 10 y 11 de junio del mismo año. En total se evacuó a cerca de 1356 personas. Los refugiados permanecieron en el albergue de Chacchagén durante más de un año, luego del cual fueron retornando a sus lugares de origen de manera progresiva, ante la disminución de la actividad eruptiva. Un censo realizado por el Comité Regional de Defensa Civil de Moquegua (CRDC-Moquegua), en diciembre de 2006, arrojó que en total permanecían en el albergue cerca de 832 personas. Para atender a los afectados por la crisis volcánica, se implementaron refugios en Anascapa y Chacchagén. El refugio de Chachagén albergó a más del 95% de la población evacuada. Durante una primera etapa en el albergue de Chacchagén se armaron 315 carpas, 137 módulos de vivienda, más de 40 letrinas (posos ciegos), un relleno sanitario y reservorios de agua. En una segunda etapa se construyeron el centro de salud, comedores, duchas, aulas, áreas de esparcimiento para niños, y se instalaron los sistemas de luz y telecomunicaciones. Los refugios fueron implementados considerando la Carta Humanitaria y las Normas Mínimas de respuesta en caso de desastre, considerados en el Proyecto Esfera. Por las características y servicios brindados en el refugio de Chacchagén, este es considerado uno de los mejor implementados en el mundo para atender crisis volcánicas. Es importante destacar que la gestión de la crisis volcánica fue compleja y difícil, ya que la erupción causó pánico en los pobladores.
CAPÍTULO II
CONTEXTO GEOMORFOLÓGICO Y GEOLÓGICO

CONTEXTO GEOMORFOLÓGICO
El origen y las características del relieve de la región Cusco se deben a diversos episodios de modelamiento tectónico y climático, que han sido los motores para la exhumación y conservación de la cadena de los Andes. Estos procesos originaron diversas formas de paisajes, constituyéndose así la geomorfología actual de su territorio.

La región presenta cuatro grandes unidades morfoestructurales que son la cordillera Occidental, la cordillera Oriental, la faja subandina y el llano amazónico, que en conjunto confieren un matiz complejo al relieve, donde se observan diferentes paisajes: altiplanicies, paisajes montañosos, colinas y los paisajes de llanura amazónica (Cuadro 2.1, Figura 2.1).

La presencia de diversos pisos altitudinales, fuertes pendientes, desniveles y formaciones geológicas heterogéneas determinan la concurrencia de variados y complejos patrones geomorfológicos en distancias muy cortas, aunándose a ello la historia morfogenética, los cuales atravesaron diversos episodios geológicos basados en el levantamiento y exhumación de las cordilleras Occidental y Oriental y la faja subandina, lo que trajo consigo la profunda disección de los valles, como por ejemplo de los ríos Mapacho, Vilcanota y Apurímac.

Cuadro 2.1
Unidades geomorfológicas de la región Cusco

<table>
<thead>
<tr>
<th>Paisaje</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altiplanicie</td>
<td></td>
</tr>
<tr>
<td>Altiplanicie allanada</td>
<td></td>
</tr>
<tr>
<td>Altiplanicie ondulada</td>
<td></td>
</tr>
<tr>
<td>Altiplanicie disectada</td>
<td></td>
</tr>
<tr>
<td>Fondos de valle glacial y aluvial</td>
<td></td>
</tr>
<tr>
<td>Fondos de valle aluvial altiplánico</td>
<td></td>
</tr>
<tr>
<td>Fondos de valle aluvial montañoso</td>
<td></td>
</tr>
<tr>
<td>Llanura de valle aluvial</td>
<td></td>
</tr>
<tr>
<td>Montañoso</td>
<td></td>
</tr>
<tr>
<td>Vertientes de montaña allanada</td>
<td></td>
</tr>
<tr>
<td>Vertientes de montaña empinada</td>
<td></td>
</tr>
<tr>
<td>Vertientes de montaña disectada empinada a escarpada</td>
<td></td>
</tr>
<tr>
<td>Colinas</td>
<td></td>
</tr>
<tr>
<td>Colinas altas fuertemente disectadas</td>
<td></td>
</tr>
<tr>
<td>Colinas altas moderadamente disectadas</td>
<td></td>
</tr>
<tr>
<td>Colinas bajas fuertemente disectadas</td>
<td></td>
</tr>
<tr>
<td>Colinas bajas moderadamente disectadas</td>
<td></td>
</tr>
<tr>
<td>Llanura amazónica</td>
<td></td>
</tr>
<tr>
<td>Terrazas altas disectadas</td>
<td></td>
</tr>
<tr>
<td>Terrazas altas sin disección</td>
<td></td>
</tr>
<tr>
<td>Terrazas intermedias disectadas</td>
<td></td>
</tr>
<tr>
<td>Terrazas intermedias sin disección</td>
<td></td>
</tr>
<tr>
<td>Terrazas bajas</td>
<td></td>
</tr>
</tbody>
</table>
Figura 2.1 Mapa geomorfológico de la región Cusco, modificado del Instituto de Manejo de Agua y Medio Ambiente, IMA-2009.
Altiplanicies
Se considera como tal a extensas zonas de territorio de superficies sub-horizontales y que, generalmente, son superficies de erosión y/o sedimentación. Se clasifican de la siguiente manera:

a) Altiplanicies allanadas: Se ubican en las partes altas, generalmente sobre los 3800 y 4500 m. s. n. m. La forma del relieve de esta unidad se debe principalmente a procesos de deposición y erosión de las glaciaciones que dejaron superficies sub-horizontales y están compuestas por materiales morrénicos, aluviales y de rocas volcánicas miocenas. Esta unidad principalmente se presenta en la provincia de Espinar, en los sectores de Yauri y Héctor Tejada.

b) Altiplanicies onduladas: Constituyen sectores de planicies de erosión y deposición con pendientes predominantes de 4 % a 15 %, que se ubican en la parte alta, generalmente sobre los 3800 y 4800 m. s. n. m. Estas unidades se presentan en la cabecera del río Apurímac, y en las localidades de Ranrapata, Héctor Tejada, Livitaca y partes altas de Descanso.

c) Altiplanicies disectadas: Son superficies caracterizadas por una topografía ligeramente llana con pendientes entre 15 % a 25 %, se encuentran disectadas y se ubican entre los 3800 y 4800 m. s. n. m. Esta unidad se encuentra cercana a las localidades de Ocoruro, laguna de Mamacocha, distrito de Condoroma, sectores de Santa Lucía de Pichigua, Descanso, así como en los alrededores de los distritos de Quehue y Livitaca, y partes altas de Rondocan.

d) Fondos de valle glacial y aluvial: Son formas de suelos de reciente formación (Cuaternario), caracterizados por tener una pendiente moderada a fuertemente inclinada (4 % a > 25 %), están ubicados por encima de los 3300 m. s. n. m. Su origen está ligado a los cursos de los ríos que fueron modelando diversos terrenos; también a través de estos ríos descendieron flujos de detritos de grandes volúmenes.

g) Llanura de valle aluvial: Se caracteriza por tener un relieve plano, con suelos de reciente formación. Esta geoforma se observa en la pampa de Anta.

Montañoso
Se consideran las montañas como las culminaciones altitudinales del sistema cordillerano andino o áreas de mayor levantamiento orogénico, con vertientes moderadamente empinadas a escarpadas (15 % a > 50 %) y con alturas que superan los 1000 metros desde la base del río hasta la parte más alta del relieve.

La configuración de las montañas en la región Cusco se deben a cambios altitudinales del ambiente tectónico y climático, con vertientes moderadamente empinadas a escarpadas (15 % a > 50 %) y con alturas que superan los 1000 metros desde la base del río hasta la parte más alta del relieve. La configuración de las montañas en la región Cusco se deben a cambios altitudinales del ambiente tectónico y climático, con vertientes moderadamente empinadas a escarpadas (15 % a > 50 %) y con alturas que superan los 1000 metros desde la base del río hasta la parte más alta del relieve.

El paisaje montañoso se puede subdividir en diversas formas de acuerdo a su grado de inclinación y diseción:

a) Vertientes de montaña allanada: Son moderadamente empinadas, de altitudes que superan los 300 metros desde la base del río a la cima. Estas unidades se encuentran distribuidas frecuentemente en los extremos de la región Cusco, ya que su pendiente y altura son básicamente de zonas de erosión bien desarrolladas.

b) Vertientes de montaña empinada: Poseen una topografía accidentada con pendientes predominantes de 25 % a 50 %; se distribuyen de manera considerable y dispersa en toda la región, con más frecuencia en la parte transicional entre la selva baja y la zona altoandina. Están conformadas también por vertientes montañosas de más de 1000 metros entre la cima y el nivel de la base.

c) Vertientes de montaña disectada empinada a escarpada: Son formas de relieve de gran magnitud, de pendientes muy empinadas y de origen glacioestructural típico de relieve cordillerano y montañoso, configuran una topografía muy accidentada, con vertientes superiores a 50 % de pendiente y más de 1000 metros de altura entre la cima y el nivel de base; su formación determinó el modelado agreste y muchas veces encañonado, como el valle de Arazá, Mapacho y la cuenca media del río Apurímac. En cuanto a la erosión actual, es claramente ostensible y está ligada a la acción natural de la topografía accidentada, conformada en su mayoría por derrumbes de esquistos y antiguos deslizamientos.
Colinas
Se conoce a las elevaciones de terreno de 30 a 300 metros de la base del río a la cima, con pendientes entre 15 % a 50 %.

Estas unidades se encuentran en su mayoría en la selva baja, forman pequeñas elevaciones onduladas, que no son otra cosa que colinas bajas bien erosionadas; además se distinguen por presentar una topografía ondulada, separadas por bandas de terreno plano, formadas por terrazas fluviales y llanos. Las zonas colinosas son algo variadas en cuanto a su paisaje, tanto por su altura como por la cantidad de cursos de agua que la atraviesan, hecho que a su vez depende de los factores litológicos estructurales y de las características de la erosión. Se pueden dividir en:

a) Colinas altas fuertemente disectadas: Litológicamente están formadas por estructuras areniscosas lutáceas y cuarzosas, formando pequeñas elevaciones donde la altura a la cima oscila entre 80 y 300 metros, con pendientes de 25 % a 50 %. Cabe mencionar que estas unidades se encuentran en la selva alta y selva baja. Las estructuras hídricas en estas unidades, inicialmente son semirectangulares, pasando luego a dendríticos. Estas geoformas se ubican en su mayor parte en la zona del bajo Urubamba, en el distrito de Echarate; también se tienen ciertas áreas en el distrito de Quimbiri, en la provincia de la Convención; y en el distrito de Camanti, en la provincia de Quispicanchi.

b) Colinas altas moderadamente disectadas: Su relieve es semiondulado a disectado, con alturas de 80 a 300 metros desde la base del río a la cima, con pendientes de 15 % a 50 %.

c) Colinas bajas fuertemente disectadas: Estas colinas son relieves de 20 a 80 metros, con pendientes de 25 % a 50 %. Se caracterizan por presentar una alta densidad de drenaje, resultado de la alta diseción del relieve que incrementa la inclinación de las vertientes colinosas.

d) Colinas bajas moderadamente disectadas: Se consideran relieves de bajas alturas, de 20 a 80 metros desde la base del río a la cima, con pendientes variables de 15 % a 25 % y de 25 % a 50 %; están distribuidas en forma aislada, principalmente en las regiones de la selva baja del llano amazónico.

Llanura amazónica
Se considera a todo tipo de terrazas presentes en toda la selva baja, teniendo como parámetros de medida a las pendientes y depósitos cuaternarios y algunas formaciones allanadas, entre las cuales se observan:

a) Terrazas altas disectadas: Se encuentran en una superficie muy reducida; tienen características peculiares, ya que es muy dificultoso diferenciar las terrazas altas y bajas a nivel topográfico y satélite; la característica principal es que tienen alturas que alcanzan los 20 y 30 metros desde el cauce del río, con una pendiente de 4 % a 15 %.

b) Terrazas altas sin diseción: Estas terrazas alcanzan alturas que varían de 20 a 30 metros y muy eventualmente hasta 50 metros sobre el nivel del río. Están formadas por sedimentos aluviales antiguos tales como gravas, arenas y arcillas; se pueden apreciar en las terrazas de los ríos Azul Mayo, Camanti, San Lorenzo, entre otras.

c) Terrazas intermedias disectadas: Representan relieves planos que se encuentran entre los 10 y 20 metros de altura del cauce del río, tienen pendientes de 4 % a 15 %, están formadas por depósitos fluviales y aluviales disectadas por diversos afluentes de ríos permanentes y temporales.

d) Terrazas intermedias sin diseción: Ocupan áreas intermedias que tienen 10 a 20 metros de altura del cauce del río principal a la cima, con pendientes de 0 % a 15 %. Estas terrazas son el resultado de diversos eventos, de desplazamientos del río Urubamba y sus principales afluentes, dejando a ambos lados geoformas planos producto de la acumulación de sedimentos, las cuales no están todavía disectadas por la red hidrográfica adyacente.

e) Terrazas bajas: Son las más próximas a los cursos de los ríos principales, formando barrancos cerca de los cauces pequeños. Alcanzan alturas hasta de 5 metros sobre el nivel del río, siendo sus materiales predominantes arenas y limos. En su mayoría, estas terrazas son cubiertas por el agua en épocas de crecidas, conformando parte de las llanuras de inundación a las que localmente se les llama aguajales o bajiales, quedando a veces ciertas formas a manera de una asociación de aguajales aislados en tierras bajas. Presentan una topografía depresionada, que recibe el drenaje de las tierras circundantes ya sea de lluvia o de río, las mismas que al quedar estancadas por su mal drenaje hacen que el terreno esté saturado permanentemente con una napa freática muy alta.

CONTEXTO GEOLÓGICO
La región Cusco abarca 37 cuadrángulos de la carta geológica nacional, tomando como base los boletines N° 25, 27, 35, 40, 42, 51, 52, 58, 65, 74, 81, 89, 90, 116, 120, 121, 125, 127, 128 y las correspondientes actualizaciones a escala 1:50 000 realizados por profesionales de la Carta Geológica del INGEMMET, con lo cual compilamos la información; en la región afloran rocas que van desde el Neoproterozoico con el Complejo Iscaybamba hasta los depósitos cuaternarios.
Neoproterozoico

Complejo Iscaybamba (Laubacher, 1978), es un complejo metamórfico donde se encuentran las anfibolitas y las rocas gneisicas. Este complejo se encuentra en la cordillera Oriental.

Complejo metamórfico (Pichari Cielo Punku) (Dalmayrac et al., 1977), está compuesto principalmente por granulitas y gneis. Este complejo metamórfico se observa en la zona subandina.

Paleozoico

a) Formación Ollantaytambo (Morocco 1977, 1978), se define como una serie de rocas metamórficas, compuesta en la parte inferior por brechas y conglomerados, seguidos por areniscas cuarcíticas en donde suprayacen niveles de andesitas (ignimbritas) de color oscuro, encima lutitas verdes intercaladas con bancos de cuarcitas y niveles cineríticos verdes (esquistos). Esta formación se localiza en la cordillera Oriental.

b) Formación Verónica (Morocco, 1978), sobreyace en ligera discordancia angular a la formación Ollantaytambo; está constituida por conglomerados divididos en secuencias: la primera secuencia presenta intercalaciones de conglomerados con lutitas (pizarras) negras, seguidas por bancos de conglomerados grano estrato crecientes; la segunda secuencia es exclusivamente conglomerado; y la tercera secuencia es grano estrato decreciente, terminando con intercalaciones de conglomerados y cuarcitas blancas verdosas. Esta formación aflora en la cordillera Oriental.

c) Formación San José (Laubacher, 1977; De la Cruz & Carpio, 1996), sobreyace en aparente discordancia a la formación Verónica; ha sido dividida en tres secuencias: la secuencia inferior está conformada por cuarcitas finas, rojizas, verdes y grises, seguida por pizarras micáceas y esquistos de estaurolita, y hacia el tope cuarcitas grises intercaladas con pizarras; la secuencia intermedia presenta niveles delgados de areniscas finas de color claro, que pasan gradualmente a lutitas negras; y en la secuencia superior afloran básicamente pizarras negras o filitas. Esta formación se observa en la cordillera Oriental y la zona subandina.

d) Formación Sandia (Laubacher, 1978), se encuentra en concordancia con la formación San José, fue dividida en cuatro secuencias: la primera está constituida por pizarras negras, la segunda se compone de bancos de cuarcitas intercaladas con niveles de pizarras negras o pizarras cuarcíticas, la tercera es predominantemente arenosa y la cuarta es una intercalación de pizarras negras o esquistos con capas delgadas de cuarcitas con presencia de nódulos calcáreos. La formación Sandia se encuentra en la cordillera Oriental y la zona subandina.

e) Formación San Gabán (Valdivia, 1974), presenta intercalaciones de pizarras, diamicíticas, cuarcitas y hacia el techo se observan microconglomerados. Esta formación aflora en la cordillera Oriental y la zona subandina.

f) Formación Calapuja (Laubacher, 1978), compuesta por limolitas carbonosas en capas gruesas y areniscas de grano fino, cuarcitas. Esta formación se observa en el Altiplano oriental.

g) Formación Ananea (Laubacher, 1978), constituida por pizarras y esquistos pizarrosos de color gris y negro, intercalados con escasos bancos de cuarcitas de 5 a 20 centímetros de ambiente sílico-clástico somero distal. Esta formación la encontramos en el Altiplano occidental, la cordillera Oriental, el Altiplano oriental y la zona subandina.

h) Formación Chagrapí (Palacios et al., 1991), está compuesta por limolitas, limoarcillitas laminares oscuras; presenta niveles de areniscas de grano grueso, también micas. Esta formación se observa en la cordillera Oriental y el Altiplano oriental.

i) Formación Ccatcca (Mendivil S., 1986), conformada por areniscas, areniscas cuarcíticas, limolitas, limoarcillitas y lutitas, predominando las areniscas de grano medio. Esta formación se encuentra en el Altiplano occidental, la cordillera Oriental y el Altiplano oriental.

j) Grupo Ambo (Newell, 1949), compuesto por conglomerado basal con clastos subredondeados a subangulosos de cuarcitas, gneis y granitos; areniscas cuarcíticas de grano medio a grueso con regular contenido de materia orgánica, intercaladas con limolitas y lutitas micáceas. Este grupo se observa en la cordillera Oriental, el Altiplano oriental y la zona subandina.

k) Grupo Copacabana (Dunbar & Newell, 1946; Newell et al., 1953), constituido por calizas micáceas, intercaladas con calizas biclásticas y espáticas, frecuentemente silificados y dolomitizados; con presencia de braquiópodos, tetracolarios, crinoïdes y fragmentos de espongiarios. Presenta también niveles de areniscas feldespáticas verdes, intercaladas con calizas micáceas, limoarcillitas verdes y rojas. Este grupo se encuentra en el Altiplano occidental, la cordillera Oriental, el Altiplano oriental y la zona subandina.

l) Formación Río Tambo (Monge et al., 1998), suprayace al grupo Copacabana; está compuesto por areniscas rojas, calizas micáceas y limoarcillitas grises a rojizas con lentes y nódulos de chert. Esta formación se ubica en la zona subandina.

m) Grupo Mitu (Mc Laughlin, 1924), se encuentra en discordancia erosional al grupo Copacabana; este grupo se encuentra en la cordillera Occidental, el Altiplano Occidental, la cordillera Oriental y el Altiplano Oriental. El grupo Mitu se ha dividido en dos tipos de formaciones: la Fm. Pisac compuestas por rocas sedimentarias y la Fm. Pachatusan compuestas por rocas volcánicas.
- **Formación Pisac** (Gabelman & Jordan, 1964), se compone de un nivel volcánico, sobre el cual se encuentran secuencias grano-estrato crecientes de brechas, y conglomerados intercalados con areniscas y limolitas rojas.

- **Formación Pachatusan** (Gregory, 1916), está constituida por brechas, aglomerados y coladas volcánicas de basaltos, aunque también se presentan riolitas e ignimbritas. Es de color rojo violáceo.

Mesozoico

a) **Formación Muni** (Newell, 1949), se encuentra en discordancia erosional al grupo Yura; está compuesta de limoarcillitas marrón-rojizas y areniscas arcósicas de grano medio a fino con laminación paralela de color rojo brumaceo, con lentes y nódulos de yeso en algunos niveles. Esta formación se observa en la cordillera Oriental y el Altiplano oriental.

b) **Formación Huambutio** (Carlotto, 1989; Carlotto et al., 1991), esta formación se encuentra suprayaciendo al grupo Mitu. Está dividida en tres miembros: el miembro inferior son conglomerados aluviales, constituidos por clastos de rocas volcánicas provenientes de la erosión del grupo Mitu, en algunos niveles se han encontrado clastos de cuarcitas y pizarras; el miembro medio está representado por lutitas rojas y niveles delgados de calizas de medio lacustre o marino con deformación sinsedimentaria; y el miembro superior está compuesto por limolitas y areniscas fluviales rojas. Esta formación se encuentra en el Altiplano occidental, la cordillera Oriental y el Altiplano oriental.

c) **Formación Huancane** (Newell, 1949), reposa en discordancia erosional o de débil discordancia angular sobre la formación Huambutio, o directamente sobre el grupo Mitu. Está dividida en dos miembros: el inferior es compuesto por conglomerados areniscales con calcáreas y areniscas cuarzoas de color blanco, donde la base de los bancos presenta canales y la granulometría es decreciente, correspondiendo a secuencias de origen fluvial; el miembro superior está constituido localmente por un nivel calceo o por niveles finos de lutitas rojas o negras. Esta formación se encuentran en el Altiplano occidental, la cordillera Oriental y el Altiplano oriental.

d) **Grupo Yura** (Benavides, 1962), se subdivide en las siguientes formaciones: Puente, Cachíos, Labra, Gramadal y Hualhuani. Este grupo se observa en la cordillera Occidental y el Altiplano oriental.

- **Formación Puente** (Wilson & García, 1962), está compuesta por areniscas cuarcíferas estratificadas en capas gruesas.

- **Formación Cachíos** (Jenks, 1948; Benavides, 1962), básicamente viene a ser una intercalación de areniscas y lutitas.

- **Formación Labra** (Wilson & García, 1962), está compuesta por areniscas en bancos delgados, a su vez se encuentran intercalados con lutitas.

- **Formación Gramadal** (Monge & Cervantes, 2000), compuesta básicamente por calizas lomasas oscuras.

- **Formación Hualhuani** (Wilson & García, 1962), está compuesta por areniscas cuarzoas de color blanquecino de grano fino a medio, presenta niveles con laminaciones oblicuas curvas y planas; entre las areniscas cuarzoas se encuentra un paquete de calizas de color negro, de grano fino tipo mudstone.

e) **Formación Murco** (Jenks, 1948; Benavides, 1962), está compuesto por limolitas rojas intercaladas con areniscas arcósicas. Esta formación se encuentra en la cordillera Occidental, el Altiplano occidental, la cordillera Oriental y el Altiplano oriental.

f) **Grupo Yuncaypata** (Kalafatovich, 1957), se encuentra dividido en cuatro formaciones: Paucarbamba, Maras, Ayavacas y Puquín. Este grupo se encuentra en la cordillera Occidental, el Altiplano occidental, la cordillera Oriental y el Altiplano oriental.

- **Formación Paucarbamba** (Chávez, 1995), presenta una alternancia de areniscas calcáreas, margas, lutitas amarillas, rojizas y verdes formando secuencias grano-estrato crecientes, depositados en una plataforma litoral.

- **Formación Maras** (Carlotto et al., 1996), compuesta por una mezcla caótica de yesos, lutitas rojas y algunos cuerpos de calizas, por efecto de diapirismo.

- **Formación Ayavacas** (Kalafatiovich, 1957), constituida por calizas del tipo mudstone a wackstone con deformación sin sedimentaria, de plataforma interna, muy poco profunda.

- **Formación Puquín** (Carlotto et al., 1991; Carlotto, 1992; Mendivil & Dávila, 1994), está compuesta por lutitas rojas y moradas lacustres con carofitas, yesos de sabkha continental. También presenta lutitas negras marinas muy poco profundas y areniscas fluvioces con flaser bedding.

g) **Formación Arcurquina** (Jenks, 1948; Benavides, 1962), se encuentra en discordancia a la formación Murco; esta formación compuesta por secuencias monótonas de calizas grises y crenas bien estratificadas, con abundante contenido fosilífero, presenta chert y algunos niveles esporádicos de lutitas grises. Esta formación se encuentra en la cordillera Occidental, el Altiplano occidental, cordillera Oriental y el Altiplano oriental.

h) **Grupo Oriente** (Kummel, 1946), compuesto por areniscas masivas cuarzoas blancas a rojizas mal seleccionadas, se encuentran en capas gruesas con una estratificación sesgada. Este grupo se halla en la zona subandina.
i) Formación Chonta (Morán & Fife, 1933), compuesta por calizas mictíicas y bioclásticas intercaladas con margas y limoarcillitas grises verdosas a marrón púrpura, rojiza, con presencia de gasterópodos, braquiópodos, ostrácodos y carofitas. Esta formación se observa en la cordillera Oriental y la zona subandina.

j) Formación Vivian (Kummel, 1946), compuesta básicamente de areniscas cuarzosas blancas a rosadas, de grano medio a grueso, en capas delgadas a gruesas con estratificación sesgada. Esta formación se ubica en la cordillera Oriental y la zona subandina.

Cenozoico

a) Formación Quilque (Gregory, 1916), reposa en discordancia sobre la formación Puquín; esta formación está compuesta de secuencias pelíticas de limoareniscas y limoarcillitas con estratificación laminar, intercaladas con delgados estratos de arenas grises de grano medio. Se encuentra en el Altiplano occidental y la cordillera Oriental.

b) Formación Chilca (Audebaud, 1973; Carlotto, 1992), compuesta por lutitas rojas con láminas de yeso, margas y areniscas calcáreas de medios lacustres o sabkha. Esta formación se observa en la cordillera Occidental, el Altiplano occidental, cordillera Oriental y el Altiplano oriental.

c) Grupo San Jerónimo (Córdova, 1986), sobreyace en la cordillera Occidental, el Altiplano occidental, la cordillera Oriental y el Altiplano oriental. Está dividido en las formaciones Kayra, Soncco y Punacancha.

- Formación Kayra (Córdova, 1986), está constituida por areniscas feldespáticas, intercaladas con lutitas rojas.

- Formación Soncco (Córdova, 1986), se divide en dos miembros: el miembro I está constituido por lutitas rojas de llanura de inundación, intercaladas con niveles de areniscas finas; el miembro II está compuesto por areniscas con clastos blandos y conglomerados con clastos volcánicos de un sistema fluvial.

- Formación Punacancha (Córdova, 1986), se divide en 4 miembros: El miembro I está compuesto por limolitas rojas de llanura de inundación y areniscas fluviales, al techo presenta un nivel volcánico, el miembro II presenta areniscas fluviales con conglomerados en la base y clastos volcánicos. El miembro III está compuesta de areniscas fluviales y conglomerados con clastos de cuarcita, calizas y areniscas. Hacia el techo el miembro IV está compuesto de areniscas fluviales y conglomerados.

d) Formación Anta (Carlotto, 1998), suprayace en discordancia al grupo San Jerónimo. Se encuentra compuesta por conglomerados con clastos esencialmente volcánicos, intercalados con areniscas feldespáticas, limolitas rojas y además algunos niveles de brechas y aglomerados volcánicos. Observamos esta formación en la cordillera Occidental, el Altiplano occidental, la cordillera Oriental y el Altiplano oriental.

e) Grupo Tacaza (Jenks, 1946), está compuesto por intercalaciones de aglomerados volcánicos y lavas brechoides. Los conglomerados aluviales se presentan con matriz tobácea, intercalados con areniscas fluviales, material piroclástico. Las rocas de este grupo se encuentran en la cordillera Occidental, el Altiplano occidental, la cordillera Oriental y el Altiplano oriental.

f) Formación Alpabamba, descrita por Caldas (1993), esta formación yace discordante sobre el grupo Tacaza. Está constituida en la parte inferior por tobas ignimbriticas blanquecinas de composición riolítica, latítica y dacítica; y en la parte superior se encuentran brechas volcánicas oscuras de composición andesítica a dacítica. Esta formación se ubica en la cordillera Occidental.

g) Formación Palca (Künk et al., 1986), suprayace a la formación Alpabamba; está compuesta de tobas cristalolíticas de composición riolítica a dacítica con biotitas, parcialmente alteradas por óxidos de fierro líticos alterados por sericita y cloritas, con brechas y aglomerados tobáceos. Esta formación se observa en la cordillera Occidental y el Altiplano oriental.

h) Formación Yahuarango (Kummel, 1946; Williams, 1949), está compuesta por areniscas en estratos gruesos a medianos, marrón rojiza claro intercalado con limoarcillitas púrpura rojizas, en partes abigarradas, algo calcáreas en estratos delgados con estratificación sesgada y con nódulos de yeso. Esta formación se encuentra en la cordillera Occidental, la zona subandina y la llanura amazónica.

i) Formación Pozo (Williams, 1949), compuesta por lodolitas abigarradas, gris verdes a marrón rojiza, con concreciones calcáreas. Esta formación se localiza en la zona subandina.

j) Grupo Maure (Wilson & García, 1962), se subdivide en 4 niveles: el nivel 1 o base está compuesto por conglomerados polimícticos y areniscas arcósicas de coloración marrón rojiza, el nivel 2 se encuentra compuesto por areniscas y limoarcillitas de coloración marrón, el nivel 3 viene a ser limoarcillitas y dolomitas de coloración beige a gris blanquecina con abundante contenido de diatomeas, y el nivel 4 o techo se encuentra compuesto por tobas cristalolíticas de composición riolítica a dacítica. Este grupo se observa en la cordillera Occidental, el Altiplano occidental, la cordillera Oriental y el Altiplano oriental.

k) Formación Paruro (Córdova, 1986; Jaimes & Romero, 1996; Carlotto et al., 1997b; Carlotto, 1998), está dividida en dos miembros: el primer miembro o base está compuesto de lutitas y limolitas lacustrares con carofitas, areniscas y conglomerados fluviales; el segundo miembro está compuesto de conglomerados...
gruesos fluviales proximales y de conos aluviales. Esta formación se ubica en el Altiplano occidental.

l) Formación Ocoruro (Audebaud, 1973), está compuesta de conglomerados polimícticos que contienen clastos subangulosos a subredondeados de calizas, cuarcitas, areniscas, dioritas, englobados en matriz arenosa. Esta formación se encuentra en la cordillera Occidental y el Altiplano occidental.

m) Formación Sillapaca (Jenks, 1946), vienen a ser lavas afaníticas y porfiríticas de composición dacítica y andesítica, estratificada con tobas en bloques de composición riodacítica. Esta formación se halla en la cordillera Occidental y el Altiplano occidental.

n) Formación Capillune (Mendívil, 1965), vienen a ser secuencias de tobas, tobas retrabajadas y vulcaneritas. Esta formación se encuentra en la cordillera Occidental.

o) Grupo Barroso, designada por Wilson & García, 1962; consiste en una serie erosionada de andesitas y traquitas, provenientes de conos volcánicos por glaciación pleistocénica donde las tobas dominan sobre las lavas. El grupo Barroso y sus complejos volcánicos y calderas se observa en la cordillera Occidental y el Altiplano occidental.

p) Formación Chambira (Kummel, 1946), suprayace a la formación Yahuarango, su composición está dada por areniscas grises y marrones de grano medio a grueso, en estratos gruesos a medianos con contenido de materia orgánica; presenta intercalaciones de limoarcillitas marrones a parduzcas, arcillosas, con areniscas grises, también en estratos gruesos a medianos. Esta formación también se encuentra en la cordillera Oriental, la zona subandina y la llanura amazónica.

q) Formación Quenamari (Audebaud, 1973), esta formación se halla en la cordillera Oriental y el Altiplano oriental; se divide en tres miembros:
 - Miembro Chacacuniza, se encuentra en la base; está compuesto de tobas litoclásticas y de lapilli, de composición riolítica y dacítica con cristales de cuarzo, plagioclasa, feldespato potásico, sanidina, biotita y trazas de vidrio en matriz criptocristalina, presentando amígdalas rellenadas por vidrio alterado a apoglonito.
 - Miembro Sapanuta, se encuentra en el intermedio, está compuesto por tobas cristaloclasticas de composición riolítica con abundante pómex.
 - Miembro Yapamayo, se ubica en el techo, está compuesto por tobas vitroclásticas de composición riolítica.

r) Formación Ipururo (Kummel, 1946), compuesta por una intercalación de areniscas grises y pardo rojizas, intercaladas con litoarcillas y conglomerados. Esta formación se encuentra en la zona subandina y la llanura amazónica.

s) Formación Rio Picha (Kummel, 1946), básicamente son gravas, arenas y arcillas medianamente consolidadas. Esta formación se ubica en la zona subandina.

t) Formación Chinchero (Cabrera, 1988; Córdova et al., 1994), está constituida por brechas que tienen una matriz arcilloarenosa. Esta formación se observa en el Altiplano occidental y la cordillera Oriental.

Cuaternario

a) Grupo Barroso
 - Estrato volcán Jatun Huaychahui, son lavas andesíticas, compuestas de plagioclasas y anfiboles.

b) Formación Casa Blanca (Chalco, 1961), son tobas vitroclásticas de composición riolítica, cohesionadas por recristalización durante su enfriamiento. No presenta estratificación definida.

c) Formación Cancao, compuesta por gravas con clastos de cuarcitas, intrusivos, esquistos en matriz arenosa.

d) Formación Santo Tomás (Pecho, 1981), está constituida por lavas gris oscuro afaníticas de composición trauquandesítica con estructura columnar visible.

e) Formación Rumicolca (Mendívil & Dávila, 1994), viene a ser un conjunto de cuerpos volcánicos de dimensiones pequeñas que afloran a lo largo del límite Altiplano-cordillera Oriental. Las lavas son generalmente de color oscuro, de negro a gris.

f) Formación San Sebastián (Gregory, 1916), esta unidad está caracterizada por formar dos secuencias (Cabrera, 1988): la primera es grano decreciente, está constituida por secuencias de areniscas fluviales de canales entrelazados deltaicos y lutitas lacustres o palustres, niveles diatomíticos y calcáreos caracterizan la parte superior. La segunda es grano creciente, está compuesta por conglomerados y areniscas de conos-terrazas fluvio-torrenciales que indican el cierre de la cuenca. Este cierre está expuesto por la presencia de estructuras compresivas sinsedimentarias (Cabrera, 1988).

g) Depósitos fluvio-glaciares, son clastos milimétricos a centímetros, polimícticos, de origen glaciar, angulosos a subangulosos con matriz arenio conglomerático; afloran rellenando cuencas glaciares en zonas altas.
h) **Volcánico Quinsachata** (Carlier & Carlatto, 1990), constituido por andesitas gris oscuras, escoriáceas, con cristales de cuarzo hialino y cuarzo xenomórfico, posiblemente relacionados a relleno de cavidades por cuarzo secundario.

i) **Depósitos de travertinos**, vienen a ser acumulaciones de travertinos asociados a fuentes hidrotermales y fallamiento.

j) **Depósitos morrénicos**, son depósitos compuestos por bloques angulosos a subangulosos de rocas intrusivas predominantemente en matriz arenoarcillosa.

k) **Depósitos aluviales**, presentan componentes clásticos milimétricos a centimétricos, polimíctico. Afloran rellenando cuencas hidrográficas actuales. Están conformados por gravas y arenas mal seleccionadas en matriz limoarenosa, incluye terrazas.

l) **Depósitos glaciares**, compuesto por gravas y bloques de diferentes tamaños con matriz variable, con limos arenosos y arcillas.

m) **Depósitos fluviales**, están constituidos por bancos de gravas y arenas formando una o varias terrazas.

n) **Depósitos lacustres**, están compuestos principalmente por arcillas con niveles de turba.

o) **Depósitos coluviales**, caracterizados por fragmentos heterométricos, subangulosos, en matriz arenosa.

p) **Depósitos bofedales**, caracterizados por fragmentos heterométricos, subangulosos, en matriz arenosa.
El volcán Ubinas se encuentra localizado en el departamento de Moquegua, a 60 km al este de la ciudad de Arequipa. Es considerado el más activo del Perú por sus 24 eventos volcánicos, registradas desde el siglo XVI hasta la actualidad. La recurrente actividad ha generado en ese lapso considerables daños en los poblados localizados alrededor del volcán, contaminando terrenos de cultivo y causando la muerte de algunas personas y un número no preciso de ganado, a consecuencia de epidemias desconocidas. Los antecedentes mencionados no se tomaron en cuenta para instalar un permanente sistema de monitoreo volcánico, a fin de formular un plan de contingencia y preparación de la población. Ello se hizo evidentemente necesario cuando se presentó la crisis volcánica en los meses de marzo e inicios de abril de 2006. En dicha oportunidad –y pese a los antecedentes históricos– el volcán Ubinas no contaba con un sistema de monitoreo volcánico continuo. Además, los pobladores del valle de Ubinas, que suman aproximadamente 3500 personas, tenían poco o ningún conocimiento del fenómeno y sus peligros asociados. Asimismo, las autoridades no contaban con un plan de contingencia ni con experiencia para hacer frente a la crisis volcánica. El 27 de marzo de 2006, el volcán Ubinas comenzó a emitir cenizas de manera leve, las que cayeron sobre la localidad de Querapi, que se encuentra a 4 km al sur del volcán y donde habitan 42 familias. El 1 de abril de 2006 se produjo la primera explosión y durante los días siguientes se incrementó de manera importante la actividad volcánica y las cenizas emitidas alcanzaron entre 1000 y 3500 m de altura sobre el cráter. Desde mayo hasta agosto de 2006, la actividad se mantuvo constante. Se produjeron repetidas caídas de cenizas, así como explosiones volcánicas violentas que arrojaron fragmentos de lava. A partir de septiembre de 2006, la actividad volcánica fue disminuyendo drásticamente, las explosiones volcánicas se hicieron más esporádicas y el volumen de cenizas emitidas fue mucho menor. Este tipo de actividad disminuyó en el 2007, y prácticamente cesó en el 2009. Con el propósito de monitorear la actividad volcánica, se constituyó un Comité Científico - creado mediante resolución N.º3768-2006-INDECI/11.0- el mismo que estuvo integrado por el INGEMMET, el IGP y la UNSA. Las primeras caídas de cenizas registradas en el valle de Ubinas afectaron al poblado de Querapi. Por esta razón, en una primera fase y de manera inmediata (20 de abril), las autoridades realizaron la evacuación de este poblado al refugio de Anascapa. El 3 de junio de 2006, el Comité Científico emitió el Comunicado N.º 8, donde recomienda al Sistema Regional de Defensa Civil de Moquegua (SIREDECI-Moquegua) elevar el nivel de alerta al color «naranja», ante el incremento de la actividad volcánica. En base a las recomendaciones emitidas, el SIREDECI-Moquegua toma la decisión de implementar la evacuación preventiva de los pobladores de las localidades de Tonohaya, San Miguel, Huatagua, Ubinas y Escacha, hacia el refugio de Chacchagén. El proceso de evacuación se llevó a cabo en dos etapas: en la primera etapa se evacuó a los pobladores de Tonohaya, San Miguel y Huatahua, el 9 de junio de 2006; en una segunda etapa se evacuó a los pobladores de Ubinas y Escacha, el 10 y 11 de junio del mismo año. En total se evacuó a cerca de 1356 personas. Los refugiados permanecieron en el albergue de Chacchagén durante más de un año, luego del cual fueron retornando a sus lugares de origen de manera progresiva, ante la disminución de la actividad eruptiva. Un censo realizado por el Comité Regional de Defensa Civil de Moquegua (CRDC-Moquegua), en diciembre de 2006, arrojó que en total permanecían en el albergue cerca de 832 personas. Para atender a los afectados por la crisis volcánica, se implementaron refugios en Anascapa y Chacchagén. El refugio de Chachagén albergó a más del 95% de la población evacuada. Durante una primera etapa en el albergue de Chacchagén se armaron 315 carpas, 137 módulos de vivienda, más de 40 letrinas (posos ciegos), un relleno sanitario y reservorios de agua. En una segunda etapa se construyeron el centro de salud, comedores, duchas, aulas, áreas de esparcimiento para niños, y se instalaron los sistemas de luz y telecomunicaciones. Los refugios fueron implementados considerando la Carta Humanitaria y las Normas Mínimas de respuesta en caso de desastre, considerados en el Proyecto Esfera. Por las características y servicios brindados en el refugio de Chacchagén, este es considerado uno de los mejor implementados en el mundo para atender crisis volcánicas. Es importante destacar que la gestión de la crisis volcánica fue compleja y difícil, ya que la erupción causó pánico en los
CAPÍTULO III
REGISTROS DE SISMICIDAD EN LA ESTRATIGRAFÍA CUATERNARIA DE LA CUENCA CUSCO

INTRODUCCIÓN
La cuenca del Cusco es una depresión elongada de dirección NO-SE que permitió la sedimentación de depósitos lacustres durante el Cuaternario, actualmente la ciudad del Cusco viene desarrollándose en dicha depresión (Fotografía 3.1).

El presente capítulo muestra la estratigrafía de la cuenca cuaternaria del Cusco mediante columnas estratigráficas detalladas levantadas a lo largo de la misma (Figura 3.1). Gregory (1916) denomina a estos depósitos con el nombre de formación San Sebastián, y los describe sobreyaciendo en discordancia angular a secuencias cretácicas y cenozoicas.

Asimismo, el detalle de las secciones estratigráficas permitió identificar estructuras sedimentarias deformadas que pueden ser correlacionadas a lo largo de la Cuenca.

Las estructuras sedimentarias deformadas pueden tener diversos orígenes, entre los principales la actividad glacial, efectos gravitacionales (deslizamientos) y sísmicos. Las estructuras sedimentarias deformadas asociadas a la actividad glacial pueden generarse por el retroceso de los frentes glaciares desestabilizando los depósitos sedimentarios; este caso no aplica al sector estudiado, ya que la cuenca del Cusco no tuvo influencia directa de actividad glacial. De igual forma procesos gravitacionales pueden generar estas estructuras de manera puntual; en la cuenca cuaternaria Cusco estas estructuras se pueden correlacionar a lo largo de toda su extensión, no siendo deformaciones sólo puntuales. El área de estudio se ubica adyacente a numerosas fallas activas (Tambomachay, Qoricocha, Zurite, Chincheros, Pachatusan, Paruro, entre otras), además las estructuras sedimentarias deformadas tienen una continuidad lateral, siendo fácil su correlación a lo largo de toda la cuenca. Por estas razones nosotros indicamos que las estructuras identificadas en el área de estudio están relacionadas con eventos sísmicos.

Fotografía 3.1 Cuenca cuaternaria del Cusco, donde actualmente se desarrolla la ciudad del Cusco.
TIPOS DE ESTRUCTURAS DE DEFORMACIÓN DE ORIGEN SÍSMICO

Las estructuras debidas a licuefacción, provocadas por un evento sísmico, son estructuras paleosísmicas por excelencia, las más estudiadas actualmente en el mundo y las más utilizadas para la determinación de sismos en el pasado (Obermeier, 1994).

El tipo de material más susceptible a la licuefacción son arenas de grano fino a medio, bien seleccionadas. Basándose en las observaciones realizadas en los materiales afectados por el terremoto de Charleston, en 1886, Amick et al. (1990) señalan que los sedimentos más favorables para la genésis de estructuras de deformación generadas por licuefacción son las formadas en ambientes de playa, barreras arenosas y sistemas fluviales. También los ambientes lacustres y fluviolacustres tienen sedimentos susceptibles de licuefacción. Así, Sims (1975) define licuefacciones a pequeña escala en sedimentos lacustres y slumps asociados a estas licuefacciones.

Los estudios experimentales (Owen, 1996) utilizan capas guía de carborundo, intercaladas entre arenas, que actúan como pequeñas discontinuidades confinantes. Después de la licuefacción el agua se acumula bajo niveles generando pequeñas antiformas angulares, que pueden llegar a extruir o emergir de forma brusca cuando se supera la resistencia de la capa confinante (Figura 3.1).

El fundamento teórico de la licuefacción se basa en que los sedimentos arenosos sin cohesión y los depósitos de limos suelen tener una resistencia alta al corte, soportando grandes cargas sin producirse alteraciones en su estructura interna. Pero, se puede producir la pérdida de resistencia de estos materiales cambiando su estado para pasar a comportarse como líquidos viscosos. El mecanismo que afecta a este cambio de estado, de sólido a líquido, es la licuación, que genera sedimentos licuefactados (Allen, 1977). Esta pérdida de cohesión puede producir desplazamientos a favor de pendientes o inyecciones de materiales licuefactados en respuesta a gradientes de presión (Figura 3.2).

La licuación consta de dos mecanismos: la licuefacción y la fluidización (Allen, 1982). Para que se pueda dar la fluidización es condición necesaria que exista una fase fluida con un movimiento

Figura 3.1 Estructuras de escape de fluidos generados por procesos de licuefacción en ensayos de laboratorio: a) y b) antiformas angulares por la acumulación de fluidos, c) abombamiento de las capas infrayacentes por el colapso de un cono de arenas y la génesis de volcanes de arena y d) zona de escape de fluidos hacia la superficie. Modificado de Owen (1996) y Rodriguez-Pascua (1998).
de ascenso relativo con respecto del sedimento, aunque esta no es una condición necesaria para licuefacción.

A continuación, se describen en forma somera las estructuras más comunes señaladas en la literatura sobre estructuras inducidas por efecto sísmico, cabe decir que parte del texto descrito a continuación es compilación del trabajo realizado por Rodríguez-Pascua (1998).

Cráteres de arena por explosión

Estas estructuras se forman como consecuencia del movimiento ascendente, de carácter explosivo, de los fluidos alojados en la porosidad de la capa licuefactible. El escape de agua arrastra en su ascenso materiales sólidos (generalmente arenas), que al ser extruidos violentamente generan un cráter en la superficie (Amick et al., 1990).

Su morfología en planta varía de circular a elíptica, en sección se puede observar un conducto alimentador y dos zonas de acumulación de clastos. La primera acumulación está en el fondo del cráter, donde termina el conducto alimentador y la segunda en la parte superior del cráter.

Gohn et al. (1984) establecen cuatro fases en el desarrollo de cráteres de arena por explosión (Figura 3.3): 1) fase explosiva, 2) fase de flujo, 3) fase de colapso y 4) fase de relleno.
Inyecciones en filón y volcanes de arena

Son estructuras relativamente comunes, que ya fueron descritas por Sarconi (1784) en Italia, como licuefacciones de suelos. Montenat (1980) indica que los volcanes de arena son fácilmente identificables y que son buenos indicadores de paleosismicidad, reflejando la actividad tectónica del área donde se hayan generado estas estructuras. También es necesaria la existencia de una capa confinante, pero totalmente impermeable en este caso, sedimentada sobre un nivel de arenas potencialmente licuefactibles.

Obermeier (1994) considera que las inyecciones de arena en filón se generan cerca de la superficie y son indicadores muy fiables de paleosismicidad. Los principales factores que controlan el desarrollo y densidad de diques son la potencia y estado de compactación del nivel licuefactado y el espesor de la capa confinante. En la mayor parte de los casos, las inyecciones intruyen a favor de fracturas en la capa confinante, pero también se pueden asociar a desplazamientos laterales o fracturación en superficie por el efecto prolongado de un sismo (Figura 3.4).

Estratificación y laminación en convoluta

Las morfologías convolutas se presentan como pliegues de la estratificación o laminación original, con sinclinales redondeados y anticlinales agudos (Allen, 1982). Cuando los anticlinales son extremadamente agudos indican el escape de fluidos a favor de éstos. Los escapes de agua también pueden crear estructuras en «llamas». La estratificación convoluta suele afectar a un único estrato, generalmente formado por limos o arenas, aunque puede en ocasiones afectar a conjuntos de estratos de diferentes litologías.

Cojan & Thiry (1992) asocian la estratificación en convoluta con eventos sísmicos, esto utilizando los criterios de Sims (1975) para identificar estructuras de deformación de origen sísmico en sedimentos lacustres. Un criterio fundamental para discriminar el origen sísmico o asísmico de estratificación en convoluta es el volumen de sedimentos afectados. Grandes volúmenes que afecten a varios estratos se asocian a un origen sísmico.

a) Laminación convoluta postdepositacional. Se produce después de haber empezado el enterramiento. Los sinclinales son de longitud de onda mayor que los anticlinales y la deformación va desapareciendo paulatinamente tanto en el piso como en el techo.

b) Laminación convoluta metadepositacional. Se desarrolla justo antes o inmediatamente después de que termine la sedimentación. Los pliegues se truncan al techo, donde pueden aparecer volcanes de arena en la terminación de los anticlinales.
Figura 3.4 Representación esquemática de las fases de desarrollo de inyecciones en filón y volcanes de arena. Modificada de Amick et al., 1990. En estos casos también fenómenos de expansión lateral (lateral spreading), lo cual es también un importante indicador de sacudimiento del terreno (ground shaking).

Figura 3.5 Diferentes tipos de laminación convoluta. Modificada de Allen (1982).
c) Laminación convoluta sindepositacional. Se produce de manera constante durante la sedimentación del estrato. La característica principal de este tipo de deformación es el adelgazamiento erosional de grupos de láminas de sinclinales hacia anticlinales, truncando en muchos casos las crestas de los anticlinales.

Estructuras en platos y pilares
Son estructuras de deformación ligadas genéticamente, que reflejan una concentración diferencial de arcillas, o materia orgánica, en sedimentos arenosos (Lowe & Lo Piccolo, 1974; Lowe, 1975). Las estructuras en plato son superficies subhorizontales con laminaciones cóncavas hacia arriba. Se producen como consecuencia de escapes de agua hacia niveles superiores y por flujos horizontales.

Cheel & Rust (1986) describen estructuras en platos y pilares en sedimentos glaciares del Cuaternario superior, como producto de licuefacciones. El proceso se inicia con una fluidización por el estrato (poco permeable), que produce laminación en convoluta en esta zona. Los anticlinales de la laminación en convoluta aparecen rotos por el escape de fluidos hacia la superficie, en forma de diapiros o flamas. En el sedimento inmediatamente superior, menos denso y poco afectado por la licuefacción, el escape de la masa fluidificada genera estructuras almohadilladas y bolas (ball and pillow). Hacia el tope, la presión confinante se ha reducido lo suficiente como para que el sedimento fluidificado pase a tener un comportamiento completamente líquido. En estos últimos estados, del escape del fluido en el sedimento licuefacado, se producen estructuras en platos y pilares hacia el tope de la secuencia (Figura 3.6).

Figura 3.6 Modelo evolutivo del desarrollo de la estratificación en convoluta, estructuras almohadilladas y estructuras en plato, a causa de un movimiento sísmico. Modificada de Cheel & Rust (1986).

Pseudonódulos, estructuras almohadilladas y bolas
La deformación se produce en estratos arenosos que descansan sobre lodos no consolidados. Se produce una disgregación total del estrato arenoso, reduciéndose a series de masas aisladas, incluidas, de manera más o menos continua, en el lodo infrayacente de menor densidad. Puede afectar a un único estrato de arenas o a varios. La diferenciación y clasificación de este tipo de estructuras no está muy clara y se realiza en función al: 1) tamaño de las estructuras y 2) modo de agregación (Allen, 1982).

Hempton & Dewey (1983) estudiaron las sismitas en el lago Hazar, emplazado en una cuenca Pull-apart del este de la falla de Anatolia. Definen pseudonódulos cuando estas estructuras aparecen independizadas. El tamaño medio de los pseudonódulos es de 50 centímetros de ancho y 45 centímetros de alto, compuestos por limos que «flotan» en el interior de arenas de grano fino. También observan intrusiones de limos con forma de champiñón.

Estructura en flama
Según Lowe (1975), la licuefacción de sedimentos con gradientes inestables de densidad se debe a la carga brusca ejercida por el estrato suprayacente sobre el infrayacente (Figura 3.7). La superposición de un sedimento denso (arenas o limos) sobre otro menos denso (lodos), ambos no consolidados, produce una estabilidad gravitacional en el sistema y la energía potencial no es la mínima. Entonces se generan por movimientos exclusivamente en la vertical a causa de gradientes gravitacionales (Collison, 1994).
Las estructuras de carga se definen como deformaciones producidas en la interfase de un estrato arenoso y uno inferior de grano más fino y menos denso (lodos o limos). Mohindra & Bagati (1996) definen estructuras en flama en sedimentos lacustres del Holoceno en el valle de Spiti (Himalaya-India) y las comparan con las estructuras generadas por un sismo de 6.8 en 1975.

Deslizamientos subacuáticos – slumps

Los deslizamientos sinsedimentarios en ambientes subacuáticos tienen lugar cuando los sedimentos no están consolidados, o lo están de una forma parcial, dando un desplazamiento traslacional a favor de una pendiente. Ello da lugar a pliegues y fracturas dentro del conjunto de sedimentos desplazados. El cuerpo resultante se puede presentar a varias escalas, recibe genéricamente la denominación de *slump* o cuerpo «slumpizado».

Las geometrías de los pliegues son muy variables, presentando una deformación dúctil por cizalla simple o pura (Figura 3.8).

Según una recopilación realizada por Allen (1982), el espesor de la lámina de sedimentos deslizada depende del ambiente deposicional en que se da el proceso. En ambientes glaciares raramente superan los 50 centímetros, con desplazamientos muy cortos (pocas decenas de metros). En sedimentos lacustres y marinos poco profundos, el espesor puede oscilar entre 1 y 10 metros. En depósitos marinos de aguas profundas, el espesor es similar a la de los sedimentos poco profundos pero excepcionalmente pueden alcanzar los 100 metros. La extensión lateral de los slumps es muy variable, pudiendo oscilar entre los 200 metros y varios kilómetros.

Helwing (1970) describe las características composicionales de los sedimentos y la geometría inicial del deslizamiento. Considera a grandes rasgos dos tipos principales de sedimentos, combinados en láminas finas alternantes.

Los principales esfuerzos desarrollados en slumps son de cizalla inducidos gravitacionalmente. Las estructuras de plegamiento y cabalgamiento que se generan durante el deslizamiento de la lámina sedimentaria se producen por desviaciones en el sentido de movimiento del *slump* o parada brusca del mismo.
Diques neptúnicos, fisuras y cuñas detriticas

El término dique se utiliza principalmente como sinónimo de intrusión brusca o forzada de materiales liquefactados, mientras que el término neptúnico es utilizado para diferenciar diques rellenos de forma pasiva o, en términos más generales, como sinónimo para todos los diques de origen sedimentario (Wintener & Sarti, 1994; Maltman, 1994). Ni la escala ni la naturaleza submarina se pueden asociar a las estructuras estudiadas en el presente trabajo. De este modo, el término de dique neptúnico se refiere a grietas rellenadas desde la superficie y generadas por fuertes procesos extensivos (Figura 3.9).

Dibujo de figura 3.8: Ilustración típica sobre la generación de pliegues y fallas inversas durante el slumping (Modificado de Alsop & Marco, 2011).

Dibujo de figura 3.9: Sección esquemática de una fisura de origen sísmico en materiales lacustres cuaternarios al noreste de los Estados Unidos. Tomada de Thorson et al. (1986).
Thorson et al. (1986) interpretan que el origen de estas estructuras es sísmico, puesto que localizan importantes estructuras de licuefacción en los materiales lacustres infrayacentes. Al extruir estos materiales, producen en la superficie una disminución de volumen en profundidad que provoca el colapso generalizado de los materiales superiores y la formación de las fisuras. La magnitud sísmica estimada para la génesis de estas estructuras es de 5 a 5.5.

ESTRATIGRAFÍA DE LA CUENCA CUSCO: DESCRIPCIÓN DE COLUMNAS ESTRATIGRÁFICAS

La ciudad del Cusco se encuentra emplazada en lo que fue un antiguo lago llamado Morkill (Gregory, 1916), es por ello el afloramiento de secuencias finas laminadas e intercaladas con arenas y gravas polimícticas de origen fluvial.

El análisis estratigráfico y de las estructuras contenidas en las secuencias nos permitió determinar y reconstruir los medios sedimentarios durante el Cuaternario, así como también identificar paleosismos en los depósitos lacustres, que por sus características físicas son capaces de guardar la huella o impronta de la deformación ocasionada por el sacudimiento del sismo.

Es por ello que el levantamiento de columnas estratigráficas detalladas en estas secuencias nos permitió conocer y ampliar el registro sísmico histórico de esta área, considerada como tectónicamente activa (Cabrera, 1988; Benavente et al., 2010), por la presencia de diferentes fallas activas, entre las más importantes: la falla de Tambomachay (Figura 3.10), falla de Qoricocha, fallas de Pachatusan, entre otras.

Columna estratigráfica «A» – sector Tankarpata

Se ubica en la quebrada Tankarpata (Figura 3.10) con 60 metros de espesor y está constituida por cuatro secuencias de tercer orden (secuencias II, III, IV y V), cabe resaltar que en esta quebrada no aflora la secuencia I (Figura 3.11). La segunda secuencia está compuesta por intercalaciones de gravas polimícticas, areniscas de grano medio a grueso y limoarcillitas con laminación paralela, generalmente. Las gravas presentan clastos subredondeados a redondeados de hasta 5 centímetros de diámetro. Esta secuencia corresponde a sedimentación de tipo fluvial. Hacia la base de esta secuencia se observan cuatro niveles deformados conservados en limoarcillitas de escala centimétrica. Según los tipos de estructuras de deformación de origen sísmico («sismitas»), estas estructuras son de tipo flame, volcanes de arena y laminación convoluta (Figura 3.2); además, hacia el techo de esta misma secuencia otra estructura deformada de 10 centímetros de espesor quedó fosilizada, esta estructura es de tipo flame (Figura 3.11 y 3.12).
Figura 3.11 Columna estratigráfica «A» de la Formación San Sebastián, quebrada Tankarpata.
La tercera secuencia de esta columna está constituida casi en su totalidad por limoarcillitas con laminaciones paralelas y pequeños niveles de gravas y areniscas de grano fino a medio, hacia el tope de esta secuencia se encuentran canales de gravas erosionando a las limoarcillitas. El ambiente sedimentario de esta secuencia es de llanura de inundación. Esta secuencia presenta un menor número de sismitas en comparación con la anterior secuencia, pero de escala mayor. Hacia la base se observó una estructura de tipo slump asimétrica (Figura 3.11) de ~15 centímetros de espesor, hacia la parte central se observaron pliegues con ejes axiales, producto de un deslizamiento subacuático (slump) de ~10 metros, afectando limoarcillitas y areniscas de grano medio a grueso.

La cuarta secuencia está compuesta por lutitas de color verde grisáceo con laminación paralela hacia la base y hacia el tope por diatomitas donde se han reportado las especies Cocconeis lineata Ehrenberg y Cymbella cymbiformis, los niveles superiores de la diatomita se encuentran deformados conjuntamente con las lutitas y niveles de turba. La litología y los fósiles nos indican que esta secuencia se desarrolló en un ambiente lacustre. Además se observó en esta secuencia, diatomitas, lamoarcillitas y material orgánico deformado por la acción de un slump. El espesor de esta secuencia es de un metro, afectada por una falla normal (Figura 3.13) con buzamiento contrario a la pendiente de la cuenca, lo que indicaría dos eventos sísmicos.

La quinta secuencia está compuesta por intercalaciones de gravas con base erosiva, arenisca de grano medio a grueso y lamoarcillitas con laminación paralela, el tope de la secuencia muestra un ordenamiento grano decreciente. Los clastos de las gravas varían de angulosas a subangulosas. Esta secuencia corresponde a un medio de sedimentación tipo aluvial. En esta secuencia no se observaron niveles deformados asociados a sismos, no se cree que sea porque no haya habido eventos sísmicos, sino que las evidencias de éstos fueron erosionados o simplemente no conservados, ya que se tratan casi en su totalidad de gravas.
Columna estratigráfica «B» – sector Unuhuaycco

Se ubica en la quebrada Unuhuaycco (Figura 3.10) con 40 metros de espesor. Está constituida por tres secuencias de tercer orden (secuencias II, III y IV), y están cubiertas las secuencias I y V (Figura 3.14). La segunda secuencia está compuesta mayormente por grava de arena, areniscas de grano medio y litoarcillitas con laminación paralela. En la base de esta secuencia se observa un nivel deformado y conservado en litoarcillitas de escala centimétrica. Según los tipos de estructuras de deformación de origen sísmico («sismitas»), esta estructura pertenece al tipo de una secuencia de arena e inyecciones de fluidos.

La tercera secuencia está compuesta por intercalaciones de areniscas de grano fino a medio y litoarcillitas con laminación paralela, hacia el tope la secuencia se hace grano-estratocreciente, predominando mayormente las areniscas con laminación en ripples y litoarcillitas con laminación paralela. El ambiente sedimentario de esta secuencia es de llanura de inundación. Además, en la base de esta secuencia se observan pliegues con ejes axiales asimétricos, pliegues generados por un *slump*, que generó la deformación de ocho metros de materiales arenosos y litoarcillosos. Por las características de escala y por posición estratigráfica (Figura 3.15), esta estructura se puede correlacionar con la estructura descrita anteriormente en la secuencia IV de la columna de Tankarpata.

La cuarta secuencia se caracteriza por ser una secuencia puramente constituida de lutitas y diatomitas; estos materiales se intercristalizan en niveles delgados hacia la base, y hacia el tope la secuencia es estratocreciente, donde las diatomitas aumentan de espesor. En las diatomitas se reportan especies como *Cocconeis lineata Ehenderg*. La litología y los fósiles nos indican que esta secuencia se desarrolló en un ambiente lacustre. En esta última secuencia, se identificó en la diatomita de la parte central un slumps de un metro de espesor (Figura 3.15), muy similar en posición estratigráfica y escala a la descrita anteriormente en la secuencia IV de la columna de Tankarpata.

Columna estratigráfica «C» – sector Uvima

Se ubica en la parte central de la cuenca del Cusco y constituye la parte más profunda del antiguo lago Morkill. Tiene 35 metros de espesor (Figura 3.10) y aflora dos secuencias de tercer orden (secuencias I y II), las cuales constituyen las más antiguas de la cuenca (Figura 3.16). La primera secuencia está compuesta por diatomitas hacia la base, litoarcillitas con laminación paralela hacia la parte central e intercalaciones de niveles delgados de areniscas de grano medio, lutitas y litoarcillitas. En la diatomita se reportan especies como *Cyclotella cf. Meneghiniana Kützing* y *Denticina sp.* Esta secuencia corresponde a un ambiente lacustre. Además, en la base de esta secuencia se observó que la estructura de diatomitas presenta pliegues con planos axiales asimétricos, los que corresponden con la geometría de un *slump*, el espesor que involucra dicho *slump* es de 5 metros; otro nivel deformado pero de escala centimétrica se evidenció en el tope de esta misma secuencia, se trata de volcanes de arena.

La segunda secuencia está compuesta por sucesiones granodecrecientes, compuestas por areniscas de grano medio a grueso y litoarcillitas; hacia el tope, gravas con clastos subredondeados, areniscas de grano medio y niveles delgados de litoarcillitas. En esta última secuencia se identificaron fallas sin sedimentarias. Esta secuencia pertenece a un ambiente depocional de tipo fluviológico. Tres niveles deformados se pudieron reconocer en esta secuencia: estructuras de tipo *flame*, volcanes de arena y laminación convoluta (Figura 3.17).

Columna estratigráfica «D» – sector Tenería

Se ubica en la quebrada Tenería (Figura 3.10) con 67 metros de espesor. Está constituida por tres secuencias de tercer orden (secuencias II, III y IV), la primera se encuentra cubierta. La segunda secuencia está compuesta mayormente por intercalaciones de areniscas de grano fino, medio y grueso con laminaciones oblícuas y ripples, en la parte media estas areniscas se intercalan con niveles delgados de litoarcillitas con laminaciones paralelas. Hacia el tope, aflora un nivel de gravas polimícticas de 3 metros de espesor y con base erosiva, con clastos subredondeados de redondeados y de un diámetro máximo de un centímetro (Figura 3.18). Esta secuencia corresponde a una de tipo fluviológico. Además, en la primera secuencia en donde se observó mayor cantidad de niveles de areniscas con laminaciones asociados a eventos sísmicos, este mayor registro de eventos podría estar controlado por la licuefacción de los bancos de gran espesor constituidos por areniscas y los niveles delgados de litoarcillitas; estos últimos contribuyen por su plasticidad a la fosilización de estas estructuras. Según los tipos de estructuras de deformación de origen sísmico («sismitas»), estas estructuras son de tipo *slump*, volcanes de arena y *ball and pillow* o estructuras alomhadilladas, con espesores que varían de un metro a veinte centímetros (Figura 3.19).

La tercera secuencia está compuesta por intercalaciones de areniscas de grano medio a grueso, litoarcillitas y lutitas. Los espesores de los materiales de esta secuencia son similares de piso a techo. En la parte media de esta secuencia aflora un nivel de un metro aproximadamente de diatomita; por sus características internas este es un nivel retrabajado.
Figura 3.15 Arriba: slump de 40 centímetros de espesor desarrollado principalmente en niveles finos de diatomita. Abajo: slump de 8 metros con pliegues asimétricos en depósitos lacustres de la formación San Sebastián.
Figura 3.16 Columna estratigráfica «C», sector Mamelón.
Figura 3.17 Arriba: Deformación de los depósitos de la secuencia I de la formación San Sebastián. Abajo: Nivel de mezcla detonado por licuefacción.
Figura 3.18 Columna estratigráfica «D», quebrada Tenería.
o retransportado. La litología y estructuras sedimentarias indican un medio depositacional perteneciente a llanura de inundación. Asimismo, en esta secuencia se evidenciaron tres niveles deformados asociados a sismos. Si bien es cierto que es un número menor que la primera secuencia, por escala serían más importantes; por ejemplo, hacia la base de esta secuencia se observa un slump de cinco metros de espesor, afectando depósitos limoarcillosos y arenosos, este slump, por proporciones y por posición estratigráfica, se correlaciona con los slumps descritos anteriormente en las columnas A y B, hacia la parte central de la secuencia III; dos niveles deformados más fueron identificados, cuyos espesores varían de 10 a 20 centímetros.

La cuarta secuencia está compuesta por intercalaciones de niveles delgados de areniscas de grano medio a grueso, limoarcillitas y lutitas con laminaciones paralelas, en el tope de la secuencia afloran dos metros de diatomita en las que se reportaron especies como Cocconeis lineata Ehrenberg. La litología y fósiles de esta secuencia corresponden a un medio de sedimentación de tipo lacustre. En esta secuencia no se pudo realizar una búsqueda detallada de estructuras de deformación por la accesibilidad a la sección.

Figura 3.19 Ejemplos de licuefacción, estructuras tipo ball and pillow.

Columna estratigráfica «E»- sector Ladrillera
Se ubica en el sector de Ladrillera, sector sureste de la cuenca Cusco, con un espesor de 27 metros y está constituida por dos secuencias de tercer orden (secuencias III y IV). La gran parte de esta columna estratigráfica está compuesta por la tercera secuencia que consta de intercalaciones de limoarcillitas y areniscas de grano medio a grueso con laminaciones paralelas. El ambiente de sedimentación de esta secuencia es de una llanura de inundación.

En esta secuencia se diferenciaron tres niveles de deformación de tipo slump, el más representativo en escala y correlacionable con los slumps descritos en las secuencias III (Figura 3.20); en estos niveles se observan pliegues con planos axiales asimétricos que involucran limoarcillitas y areniscas de grano medio a grueso. Los otros dos slumps tienen espesores que varían de 20 a 35 centímetros respectivamente.
Figura 3.20 Columna estratigráfica «E», sector Ladrillera.
En el tope de la columna estratigráfica (secuencia IV) aflora un nivel de tres metros de espesor de diatomita donde se reporta la especie *Cocconeis lineata* Ehrenderg. Las diatomeas nos indican un ambiente de sedimentación lacustre.

Columna estratigráfica «F»-sector Agua Buena

Se ubica en la quebrada Agua Buena (Figura 3.10) con 45 metros de espesor. Está constituida por cuatro secuencias de tercer orden (secuencias II, III, IV y V). La segunda secuencia está compuesta por las intercalaciones de gravas con clastos subredondeados, areniscas de grano fino a grueso y limoarcillitas con laminación paralela. Esta secuencia corresponde a una sedimentación del tipo fluvial. En esta secuencia identificamos una estructura deformada, que según los tipos presentados anteriormente pertenece al de cráteres de arena por explosión, la estructura se encuentra bien conservada (Figura 3.21 y 3.22), es así que se puede observar evidencia de las cuatro fases: 1) fase explosiva, 2) fase de flujo, 3) fase de colapso y 4) fase de relleno.

La tercera secuencia está constituida en su totalidad por una secuencia rítmica de niveles delgados de areniscas y limoarcillitas con laminaciones paralelas. El medio de depositación de esta secuencia corresponde a uno de llanura de inundación. Los materiales de la base se encuentran deformados por un *slump* de 10 metros de espesor, esta estructura se correlaciona con los *slumps* descritos en las columnas anteriores.

La cuarta secuencia se caracteriza por ser netamente de diatomita donde se reportan especies como *Cyclotella cf. Meneghiniana Kützing y Denticina sp.* Por las características de la diatomita el ambiente de depositación es lacustre. Todo el nivel de diatomitas se encuentra plegado, por su geometría y ordenamiento interno, esta deformación es por *slump*.

La quinta secuencia está conformada por niveles de limoarcillitas con estratificación paralela y canales de gravas, interestratificadas con niveles delgados de areniscas. Hacia el tope aflora una secuencia compuesta por gravas con clastos subangulosos de siete centímetros de diámetro promedio. Toda esta secuencia se depositó en un medio aluvial.

Columna estratigráfica «G»-sector Petroperú

Se ubica al sur de la cuenca Cusco (Figura 3.10) con 35 metros de espesor. Está compuesta por tres secuencias de tercer orden (secuencias III, IV y V). La tercera secuencia está constituida por limoarcillitas con laminaciones paralelas hacia la base e intercalaciones de areniscas de grano fino y limoarcillitas hacia el techo, en esta última parte los materiales se encuentran deformados. Esta primera secuencia corresponde a una sedimentación de llanura de inundación y los depósitos deformados del tope de la secuencia corresponden a un *slump* (Figura 3.23), que se correlaciona con los *slumps* descritos anteriormente. Asimismo por debajo de este se pudieron identificar dos *sismitas* más; según los tipos de estructuras de deformación de origen sísmico («sismitas»), estas estructuras son de tipo de inyección de arenas y de tipo *slump*.

La cuarta está constituida por intercalaciones de limoarcillitas con niveles delgados de arenisca; mientras que la quinta secuencia por areniscas, gravas y limoarcillitas, respectivamente (Figura 3.23). El ambiente deposicional de estas dos secuencias es lacustre y aluvial, respectivamente. Asimismo, la poca accesibilidad a los afloramientos superiores nos impidió identificar estructuras deformadas asociadas a sismos.
Columna estratigráfica «H»- sector Santa Rosa

Se ubica al sureste de la cuenca Cusco (Figura 3.10) con 37 metros de espesor y está constituida por tres secuencias de tercer orden (secuencias III, IV y V). La tercera secuencia está compuesta por intercalaciones de limoarcillitas con laminación paralela, areniscas de grano fino a medio y hacia el tope niveles delgados de gravas con clastos subredondeados; el ambiente de depositación de esta secuencia es transicional entre fluvial y lacustre. En esta secuencia se identificaron tres niveles deformados («sismitas»), los dos primeros corresponden a estructuras tipo ball and pillow o almohadilladas, estas estructuras tienen hasta 50 centímetros de longitud (Figura 3.24).

La cuarta secuencia está compuesta por diatomitas y niveles delgados de lutitas hacia el tope, la litología y fósiles de esta secuencia nos indican un medio de sedimentación de tipo lacustre. Asimismo, se observaron fallas sinsedimentarias hacia la base y 70 centímetros de diatomita deformada por un slump, los niveles de diatomitas del tope de esta secuencia se encuentran afectados por fallas normales con desplazamientos de 50 centímetros (Figura 3.24).

La quinta secuencia está compuesta por areniscas y limoarcillitas con laminaciones paralelas, la litología y las estructuras sedimentarias nos indican un ambiente de sedimentación tipo fluvial.

CORRELACIÓN ESTRATÍGRAFICA Y ANÁLISIS DE LA PALEOISMICIDAD EN LA CUENCA CUATERNARIA DEL CUSCO

Los trabajos realizados en sedimentos lacustres son escasos, a pesar de las ventajas para el estudio de la paleoismicidad (Sims, 1975; Richi Lucci, 1995; Rodríguez-Pascua, 1998). Muchos de los sedimentos lacustres, al encontrarse permanentemente bajo una lámina de agua, presentan una susceptibilidad a la licefacción. Esta característica hace que las estructuras de paleoismicidad («sismitas») generadas en estos medios se preserven, al no existir fenómenos erosivos significativos bajo la lámina de agua. Es por ello que la cuenca lacustre cuaternaria del Cusco es un área con potencial para realizar trabajos de paleoismicología, y ser el punto de partida para iniciar con este tipo de estudios en el Perú; lo que permitirá ampliar la ventana de registros sísmicos, a través de la caracterización de los diferentes tipos de sismitas.

Distinguir el origen sedimentario y diagenético, o su carácter de auténticas sismitas, de las estructuras deformadas en sedimentos, resulta una tarea difícil; puesto que los procesos que los generan son los mismos, pero se diferencian en el fenómeno desencadenante (Richi Lucci, 1995). Algunos autores (Obermeier et al., 1990; Audemard & De Santis, 1991; Moretti et al., 1995 y Rodríguez-Pascua, 1998) dedicados al estudio de sismitas, especialmente debido a licefacción, reafirmán el origen sísmico de estas estructuras si se pueden asociar a áreas tectónicamente activas confirmadas bien por la existencia de fallas activas, por registro instrumental o histórico. Además coinciden en afirmar que sísmos de magnitud >5 generan sismitas, entre las que mencionan los diques de arena, volcanes de arena, pliegues de pequeña escala, estructuras de carga, estratos convolutas, estructuras flame, estructuras ball and pillow y corrimientos laterales.

Un total de 36 sismitas (Figura 3.25) fueron identificadas en el registro estratigráfico de la formación San Sebastián, que a continuación pasamos a describir:

En la primera secuencia se han reconocido tres estructuras deformadas, la primera es un slump donde el plano de despegue fueron las diatomitas, las dos restantes son estructuras de tipo flame y ball and pillow (Figura 3.25). Tanto la cercanía a fallas activas, como la correlación de estas estructuras a lo largo de toda la cuenca, sugieren que estas figuras sedimentarias están relacionadas con eventos sísmicos.

En la segunda secuencia se observan tres niveles de estructuras deformadas en las columnas A, D e I, y una estructura en las columnas B, C, E y F; la estructura más común en esta secuencia son las estructuras de tipo ball and pillow, seguidas por los volcanes de arena.

La característica más resaltante de la tercera secuencia, dejando a un lado los tres niveles de estructuras deformadas en las columnas A y H, es el slump, que se puede identificar y correlacionar a lo largo de toda la Cuenca en donde aflora la secuencia III, este deslizamiento subacuático debe estar relacionado con un evento sísmico de magnitud elevada.

De igual forma, en la cuarta secuencia se puede correlacionar otro slump (Columna A, B, F y H), si bien es cierto de menor escala pero de igual importancia, ya que este evento puede estar asociado al desembalse de la laguna. Suprayaciendo a esta secuencia se observan gravas angulosas a subredondeadas (secuencia V).

En conclusión, los estudios de paleoismicidad son un aporte esencial para la ampliación del registro sísmico y para la determinación de zonas de riesgo sísmico, especialmente en áreas de deformación en las que los sismos más importantes pueden estar separados por períodos de tiempos mayores que los registros instrumentales e históricos.

Las columnas estratigráficas muestran que en la depresión de la ciudad del Cusco se formaron dos lagos durante el Cuaternario, el primero tuvo como dique Angostura (sureste del Cusco) el que fue fracturado por un evento sísmico posiblemente en el Pleistoceno inferior (Columna A y D); la ruptura del dique generó el desembalse del lago para luego desarrollarse un sistema fluvial. Durante este periodo se produjeron varios eventos sísmicos quedando registrado...
Figura 3.25 Correlación de las columnas estratigráficas de la formación San Sebastián y de los slumps más representativos de la cuenca.
la mayor cantidad en la Columna I, donde se observan estructuras ball and pillow en bancos de arena de espesores de 20 metros. De acuerdo a la tabla de caracterizaciones de sismitas propuesta por Rodríguez-Pascua (1998) este evento estaría relacionado con un sismo de magnitud >6.5.

Posteriormente se comienza a desarrollar la llanura de inundación, los sedimentos aún inconsolidados dieron lugar a deslizamientos y liquefacción producto de un evento sísmico, el que quedó registrado en todo el borde del lago (Columna A, B, E, F, G e I). Por la cantidad de material deformado, este evento posiblemente también esté asociado a un sismo de magnitud >6.5. A continuación se forma otro lago debido al emplazamiento de los volcánicos Rumicolca, estas lavas habrían represado el valle. En el Pleistoceno superior otro slump con características similares al anterior se desarrolla (Columna A, F y H), generando posiblemente el desembalse del lago.

El Cusco constituye una zona de tectónica activa, donde las estructuras deformadas (sismitas) están relacionadas a la reactivación o reactivaciones de las fallas de los sistemas de fallas Zurite-Cusco-Urcos-Sicuani. Además, si bien es cierto que la recurrencia de estos sismos son períodos largos, podemos afirmar, a partir de las caracterizaciones de las estructuras sedimentarias deformadas, que estos fueron de magnitud igual o mayor a 6.5, a partir de las caracterizaciones de las estructuras con respecto a la huella que dejaron en el registro estratigráfico.
INTRODUCCIÓN

Durante las últimas décadas los términos de neotectónica y tectónica activa fueron modificándose desde el punto de vista del período que comprende estos procesos. Es así que inicialmente fueron utilizados con un sentido temporal de acotación. Obruchev, V.A. (1948) introdujeron el término neotectónica para describir «El estudio de los movimientos tectónicos que han ocurrido desde finales del Terciario y durante la primera parte del Cuaternario». Posteriormente, Slemmons et al. (1991) modifican el intervalo temporal y definen la neotectónica como el «Estudio de los eventos y procesos tectónicos ocurridos después del Mioceno».

Durante los años noventa comenzó a considerarse el hecho de que la neotectónica no debía restringirse dentro de unos límites temporales, que en unos lugares pueden ser significativos, pero no en otros. Esta nueva visión tiene relación con la consideración del concepto de régimen tectónico vigente (current tectonic regime), definido por Muir Wood & Mallard (1992) como «Régimen de esfuerzos que induce y controla la actividad actual de las fallas y que ha podido extenderse temporalmente en el pasado de modo distinto en distintas zonas». Finalmente, Mörner (1990) propuso que el comienzo de la fase que se calificó como neotectónica comenzaría en diferentes momentos según la zona que se trate.

Como se observa, con el paso del tiempo se ha ido dando mayor importancia a la definición del concepto de neotectónica, que al propio mecanismo o proceso de deformación, con una duración que varía de unos lugares a otros, más que a la acotación temporal del proceso. En este sentido, la definición de neotectónica más aceptada en nuestros días es aquella que la describe como el «Estudio de procesos y estructuras que se han propagado o reactivado durante el Cuaternario, ejerciendo un control en la evolución reciente del relieve, en la disposición y estructura de los depósitos cuaternarios o en la génesis de la sismicidad histórica e instrumental» (Stewart & Hancock, 1994).

A lo largo del presente trabajo se estudiarán los términos de tectónica activa y falla activa. Wallace (1986) define tectónica activa como «Movimientos tectónicos que se esperan que sucedan en un periodo de tiempo que afecta a la sociedad». En este sentido, consideramos que una estructura o un proceso son activos cuando han ocurrido durante el período histórico y se espera que actúen en el futuro sin que exista ningún dato que indique su futuro cese.

Al término falla activa se le ha dado a lo largo de los años, varias definiciones en función de la aplicación del concepto a trabajos de investigación, cálculos ingenieriles, etc. Stewart & Hancock (1994) definen una falla activa como «aquella falla que ha presentado movimientos dentro del período de tiempo abarcado por el régimen tectónico vigente» (Muir Word & Mallard, 1992); mientras que la U.S. Environmental Protection Agency (1981) considera que las fallas activas son «aquellas fallas que han sufrido movimientos en los últimos 10 000 años (Holoceno). Posteriormente, un concepto estrechamente relacionado con el de falla activa viene definido por el término falla capaz, que la U.S. Nuclear Regulatory Commission (1982) define como «aquella falla que ha experimentado al menos un movimiento en los últimos 35 000 años y, al menos, dos en los últimos 500 000 años». Es decir, fallas activas durante el Pleistoceno.

A lo largo de este estudio se utilizará el término falla activa para referirse a fallas o escarpes de fallas que presentan suficientes indicios de haberse originado o reactivado durante el Cuaternario, ejerciendo un control en la evolución reciente del relieve, en la disposición y estructura de los depósitos cuaternarios o en la génesis de la sismicidad histórica e instrumental.

MORFOLOGÍA DE ESCARPES DE FALLAS

Los efectos más interesantes producidos en la superficie terrestre por los sismos corticales son los desplazamientos o desniveles en la superficie por efecto del desplazamiento de la falla, éstas están controladas de acuerdo a la cinemática o movimiento de la falla y a su geometría, que está estrechamente ligada a la orientación de los ejes de esfuerzos.

La reactivación de una falla geológica en un área determinada se puede acomodar en un solo plano de falla o, como en casos más comunes, en varios. No todos los segmentos de una falla se tienen que reactivar con el mismo evento sísmico, esto dependerá de varios factores.

En el registro de medidas geomorfológicas y estratigráficas de escarpes de falla, se debe tener en cuenta la posibilidad de una parte o la totalidad del desplazamiento, que pueden ser por continuos movimientos de creep (Scholz et al., 1969; Evans et al., 1981). El desplazamiento a lo largo de un plano de falla puede ser debido a
la combinación de movimientos repentinos (sísicos) o lentos (sin expresión sísmica).

Se ha observado, mediante relaciones geológicas, sismológicas, datos geodésicos y paleosismicidad, que a lo largo de numerosas zonas de falla se pueden identificar segmentos que muestran un comportamiento similar durante eventos sísmicos, pero en los que su comportamiento es diferente para zonas de fractura adyacentes (Cluff et al., 1980; Schwartz & Coppersmith, 1984; Slemmons & Depolo, 1986). Por tanto, hay que ser precavido en la interpretación de datos paleosísmicos para diferentes segmentos dentro de una zona de falla. Para fallas de rumbo, pequeñas variaciones en la orientación o el buzamiento del plano de falla, podrían generarse zonas sometidas a transpresión o transtensión, dentro de un mismo componente de desplazamiento.

Existen diversos métodos y técnicas para la caracterización de escarpes de falla en materiales no consolidados y consolidados. Un limitante en este estudio fue el no contar con dataciones, teniendo que utilizar métodos geomorfológicos, cinemáticos y geométricos para la caracterización espacio-temporal de los escarpes de falla.

Por ejemplo, los métodos dedicados a la datación de los escarces de falla en materiales no consolidados (Figura 4.1) se basan en la pendiente del escarpe. El perfil topográfico del escarpe es función del ángulo inicial de ruptura, la litología, el clima y de la tasa de erosión y deposición. Muchos escarpes tienen diferenciales en sus perfiles topográficos que separan secciones con pendientes más o menos uniformes (Bucknam & Anderson, 1979; Andrews & Hanks, 1985; Mayer, 1984 y Nash, 1986). Estas deben correlacionarse con una sucesión de eventos individuales ocurridos en el mismo escarpe. El ángulo de la pendiente es inversamente proporcional a la edad (Wallace, 1977; Zhang et al., 1986). Los eventos de pequeña magnitud, o los ocurridos en pequeños intervalos (movimientos de creep), no se diferencian con este método. En la práctica, se asume que la falla se reactiva al pie de cada escarpe previo; por tanto, el número de cambios de pendientes será equivalente al de sismos registrados en la zona (Vittori et al., 1991).

Figura 4.1 Escarpe de falla en materiales detríticos no consolidados: a) superficie original desplazada; b) y c) paleoescarpes con diferente grado de erosión, asociados a movimientos tempranos de la falla; d) escarpe de falla actual; e) cuña coluvial, n: ángulo de pendiente (disminuye con la edad). Tomado de Rodríguez-Pascua (1998).
Se han desarrollado varios métodos para determinar la edad de los escarpes de fallas normales, basados en la tasa de erosión del escarpe y en procesos de alteración. Esta relación es función de la altura y la pendiente, frente al tiempo transcurrido, mediante una ecuación de dispersión (Culling, 1960, 1965) o ajuste por comparación con escarpes de falla o terrazas lacustres de edad conocida. Trabajos a destacar que han utilizado esta técnica son los de Anderson (1979); Nash (1980, 1986); Colman & Watson (1983); Hanks & Wallace (1983). La aplicabilidad de este método se restringe al Cuaternario superior y a condiciones climáticas y sedimentarias bien conocidas. También tiene limitado su uso al tipo de falla, siendo solo aplicable para fallas de tipo normal (Siemons, 1957; Wallace, 1977; Machette, 1986).

El estudio de fallas inversas presenta más problemas, debido a que la complejidad de la deformación aumenta. De todos modos, se han obtenido resultados muy importantes en el estudio de este tipo de fallas (Figura 4.2), entre los que se pueden destacar a Carver (1987) y Swan, F.H. (1988).

Las fallas de rumbo o desgarres proporcionan una cantidad de información, especialmente con marcadores sedimentarios y geomorfológicos, como desplazamientos laterales de canales o cauces de ríos y terrazas.

De igual manera, existen diversos métodos para caracterizar escarpes de falla en materiales consolidados; las características de estos escarpes son diferentes a las formadas en los escarpes de falla en materiales no consolidados. En planos de falla normal, se pueden observar zonas homogéneas con diferentes grados de alteración, como las facetas triangulares (Wallace, 1984). Estos deben indicar desplazamientos bruscos o continuos, interrumpidos por períodos de inactividad de la falla, en los que se produce una erosión que hace retroceder el escarpe. También hay que tener en cuenta posibles desplazamientos gravitacionales o erosión de los planos de falla, en función de condiciones climáticas específicas.

La presencia de estrías en un plano de falla ha sido asociada a deslizamientos sísmicos. Es probable que muchas estrías también se puedan dar por movimientos asísmicos (deslizamientos). Hancock & Barka (1987) proponen que existe una relación entre el análisis estadístico de las longitudes de las estrías y la magnitud de los deslizamientos simples. Las estrías se pueden tratar por métodos estadísticos de análisis poblacional de fallas, permitiendo calcular el tensor de esfuerzos que ha producido la fracturación.

SISTEMAS DE FALLAS CUATERNARIAS Y ACTIVAS EN LA REGIÓN CUSCO

Según la división morfoestructural tradicional, la región Cusco forma parte de oeste a este de la cordillera Occidental, el Altiplano, la cordillera Oriental y el frente orogénico o zona subandina, cada una de estas zonas limitadas por grandes sistemas de fallas con orientaciones paralelas a la cadena andina y con características.
estructurales propias. Trabajos recientes sobre dominios geotectónicos del territorio peruano (Carlotto et al., 2010) sugieren que el Cusco se localiza en la terminación noroeste del Altiplano peruano-boliviano y estaría ubicado entre la cordillera Occidental, Altiplano occidental, Altiplano oriental, cordillera Oriental y zona subandina; siendo el Altiplano, en este lugar, la zona más estrecha que se encuentra limitada por las cordilleras Occidental y Oriental.

Existen estudios (Carlotto, 1998; Sempere et al., 2005; Carlier et al., 2005, entre otros) que señalan sobre la actividad de fallas regionales desde épocas paleozoicas hasta neogénicas y que estuvieron asociadas a magmatismo durante su actividad.

En el presente estudio ponemos en evidencia actividad tectónica Plio-cuaternaria a lo largo de estos sistemas de fallas regionales y antiguas, generando desniveles que cortan depósitos cuaternarios que llegan hasta los 100 metros en la componente vertical, en algunos casos se encuentran de manera discontinua. Estudios realizados en la década de los ochenta (Suárez et al., 1983; Sébrier et al., 1985; Cabrera, 1988) ponen en evidencia de norte a sur las fallas cuaternarias y activas de Zurite, Chincheros, Tambomachay, Tamboray, Qoricocha, Pachatusan, Ocongate, Langui-Layo.

Principalmente observamos fallas normales relacionadas a compensaciones topográficas o relacionadas a cadenas en fase de exhumación, o simplemente dispuestas paralelas a la dirección del esfuerzo máximo horizontal. Asimismo, se ponen en evidencia fallas inversas y transcurrentes vinculadas al máximo esfuerzo principal que genera la convergencia de la placa de Nazca por debajo de la placa Sudamericana.

A continuación, se describen las fallas cuaternarias y activas teniendo en cuenta su morfología, cinemática y geometría.

Sistema de fallas Zurite-Cusco-Urcos-Sicuani (SFZCUS)

El sistema de fallas Zurite-Cusco-Urcos-Sicuani se desarrolla en una longitud aproximada de 220 kilómetros con una dirección ~N 140° E, limita hacia el oeste con el Altiplano oriental y hacia el este con la cordillera Oriental, en su prolongación hacia el norte presenta una notable deflexión, adoptando una dirección aproximada este-oeste. A lo largo de este sistema de fallas, aparentemente de geometría subvertical, se observan escarpes de fallas que cortan depósitos cuaternarios, indicando su actividad o reactivación por segmentos.

a) **Falla Zurite-Huarocoordo**

Se extiende con dirección N 100° E y 115° NE hasta la provincia de Abancay-Apurímac, muestra reactivaciones en segmentos a lo largo de 55 kilómetros, dando una idea de su actividad durante el Cuaternario. Es parte de la deflexión de la cadena andina y constituye el límite entre la cordillera del Vilcabamba y la cuenca cuaternaria Anta. Se ubica a 40 kilómetros de la ciudad del Cusco.

Desde el punto de vista geomorfológico, Cabrera (1988) menciona escarpes dispuestos en geometría de tipo echelón a lo largo de 24 kilómetros. En el presente estudio determinamos dos segmentos principales de dirección este-oeste que destacan por su expresión geomorfológica.

El sector este presenta escarpes morfológicamente mejor conservados, en el sector oeste se observan escarpes de fallas degradados o erosionados, siendo por consiguiente el segmento este el que muestra mayor evidencia de actividad reciente. Además, los segmentos de fallas del sector este muestran expresiones geométricas más lineares en comparación con el sector oeste.

Las fallas afectan depósitos aluviales y coluviales, posiblemente relacionadas a la última glaciación (~11 000 años B.P.), con desplazamientos verticales de ~100 metros (Fotografía 4.1) y secundarios que generan desniveles verticales de 6 metros, algunas veces con buzamientos contrarios al principal, dando lugar a fallas antitéticas. Al pie de la faz libre de la escarpa principal (Fotografía 4.2) se observan las últimas reactivaciones asociadas a depósitos coluviales, estos cubiertos parcialmente con vegetación típica de la zona. Finalmente, el sector oeste muestra facetas triangulares que dan indicios de la actividad de la falla.

La geometría en el subesuelo de la falla y estructuras asociadas es aún poco conocida y, por tanto, motivo de debate. En superficie está caracterizada por un rumbo general, con complejidades geométricas de menor escala, que definen diferentes segmentos a lo largo de su trazo. La falla presenta una inclinación variable al sur entre 70° y 55°. Creemos que los buzamientos semiverticales de la falla tienen relación con el plano de falla inverso, que pone en contacto con vergencia hacia el norte secuencias cretácicas sobre secuencias eocenas. El análisis de tectoglifos y estrías nos permitió discriminar hasta tres familias de estrías, elementos que sugieren movimientos de tipo normal con componente dextral de la falla Zurite-Urcos. Los escarpes de fallas con expresión morfológica más reciente ubicados en las alturas de Huarocoordo indican movimiento de tipo normal con componente sienstral.

El desplazamiento que genera la falla principal (~100 metros) sugiere una acumulación de movimientos normales durante el Cuaternario. Cabrera & Sébrier (1998) mencionan que el sector central de la falla corta el valle de Soccomarca afectando terrazas aluviales recientes. Asimismo, estas estructuras están relacionadas con deslizamientos, donde sus coronas o cabeceas coinciden con los planos de fallas.
Fotografía 4.1 Las flechas de color rojo señalan el escarpe principal de la falla Zurite-Huarocondo, donde se aprecia un desnivel de 100 metros de la superficie y escarpes con desniveles más pequeños (6 metros) producto de la migración del plano de falla, fotografía tomada hacia el noreste.

Fotografía 4.2 Sector oeste de la falla que muestra facetas triangulares dando una idea de la actividad de la falla Zurite-Huarocondo. Fotografía tomada hacia el noreste.
La información sobre sismicidad instrumental es escasa, pero algunos eventos registrados por la estación de Tambomachay indican actividad moderada y de baja magnitud en esta zona, aunque en el sector oeste la actividad sea más continua. Sin embargo, los estudios de geología superficial establecen rupturas superficiales que estarían ligadas a sismos superiores a 6 grados de magnitud. La capacidad sismogénica de estas estructuras se verá con más amplitud en los capítulos siguientes.

b) Falla Tambomachay

Se encuentra ubicada en el borde norte de la ciudad del Cusco. Se extiende con dirección N 120° E a lo largo de 20 kilómetros, limitando una cuenca rellena por depósitos fluviales y lacustres del Cuaternario. Su ubicación adyacente a la ciudad del Cusco (4 kilómetros) la convierte en un peligro latente.

El cartografiado al detalle (1:10 000) permitió determinar que la falla Tambomachay presenta escarpes con alturas máximas de 600 metros, producto de la acumulación de sus movimientos verticales. Los escarpes más recientes, probablemente del Holoceno, tienen alturas que varían entre 2 y 20 metros, y se ubican al pie de la cordillera donde se observa el contacto fallado de rocas del basamento con depósitos aluviales cuaternarios (Gregory, 1916; Marocco, 1977).

Se puede dividir en tres segmentos a partir del análisis morfoestructural. El segmento oeste se caracteriza por estar compuesto de un escarpe principal rectilíneo degradado o erosionado con desplazamientos verticales de hasta 100 metros y escarpes secundarios mejor conservados afectando depósitos aluviales y morrenas de geometría sinuosa, lo que sugiere un ángulo de buzamiento bajo de estas fallas secundarias (Figura 4.3). Este segmento de falla tiene una tendencia aproximadamente este-oeste (Figura 4.4), y en su terminación occidental se conecta con la falla Tamboray de dirección norte-sur.

Figura 4.3 Imagen satelital de la ciudad del Cusco (NASA). Se observa en la parte norte, bordeando la cuenca, a la falla Tambomachay; ver flechas rojas.
Figura 4.4 Segmento oeste de la falla Tambomachay, donde se observa un escarpe principal rectilíneo y segmentos sinuosos secundarios afectando también depósitos aluviales y de morrenas.
El segmento central tiene una longitud de 10 kilómetros aproximadamente. Presenta un escarpe de falla principal rectilíneo; y a un kilómetro al sur aproximadamente, escarpes paralelos y con buzamientos opuestos afectando depósitos lacustres y aluviales con movimientos de tipo normal (Fotografías 4.3 y 4.4).

Asimismo, en el extremo este de la falla Tambomachay se observan cuatro segmentos paralelos de falla con direcciones noroeste-sureste, de norte a sur se tiene: un primer segmento ubicado en la parte alta de la corona del deslizamiento Picol (Fotografía 4.5 y 4.6), y generando un desnivel en la superficie de 3.5 metros producto del movimiento de la falla. El segundo segmento se extiende a lo largo de 2.5 kilómetros, cruza el deslizamiento de Picol y genera un desnivel de 10 metros en la superficie, afectando depósitos coluviales. En la quebrada Thuniyoq se observó un tercer segmento que pone en contacto rocas del basamento (Capas Rojas) con depósitos cuaternarios, este segmento se puede reconocer a lo largo de 2.7 kilómetros. Finalmente, se observa que la estructura principal que bordea la cuenca cuaternaria, se conecta hacia el sureste con una estructura más antigua, sin evidencias de reactivaciones cuaternarias.

En síntesis las fallas presentan direcciones noroeste-sureste; inclinación principal hacia el sur, con ángulos de buzamiento comprendidos entre 60° a 70°, hacia el extremo noroeste la falla cambia de dirección a una tendencia este-oeste. El análisis microtectónico realizado por Huamán (1987); Cabrera (1988) y Benavente et al. (2010) del último movimiento de la falla sugiere un movimiento de tipo normal (Fotografía 4.7), con esfuerzos principales que indican extensión norte-sur. Asimismo, el análisis de tectoglifos sugieren movimientos predecesores de tipo inverso, sinestral y normal, tal como lo indica también Cabrera (1988).

Trabajos sobre el peligro sísmico por la falla Tambomachay indican que se trata de una estructura activa desde el último millón de años (Cabrera, 1988; y Benavente et al., 2010) hasta la actualidad, afirmación que se sustenta en la sismicidad superficial en el área de influencia de la falla y que es registrada con mayor frecuencia durante los años 2010, 2011 y 2012 por el Instituto Geofísico del Perú (IGP).
Fotografía 4.4 Segmentos secundarios del sector central de la falla Tambomachay, las flechas rojas muestran las fallas con buzamientos opuestos, generando estructuras tipo graben. Fotografía tomada hacia el sur.

Fotografía 4.5 Deslizamiento del cerro Picol, ubicado al norte de la ciudad del Cusco, se pueden observar escarpes de fallas en la corona del deslizamiento y otros que cruzan el cuerpo del deslizamiento (flechas rojas). Fotografía tomada hacia el norte.
Fotografía 4.6 Escarpe de falla ubicado en la cabecera del deslizamiento del cerro Picol. Fotografía tomada hacia el noroeste.

Fotografía 4.7 A la izquierda: Segmento de la falla Tambomachay afectando depósitos lacustres con un movimiento de tipo normal (fotografía tomada hacia el noroeste). A la derecha: Se muestran estrías del último movimiento de la falla Tambomachay (fotografía tomada hacia el norte).
c) Falla Cusco

El valle del Cusco tiene una orientación noroeste-sureste, las imágenes satelitales de la microcuenca del río Huatanay muestran un lineamiento con la misma dirección, que se prolonga hasta Oropesa por el sur y la pampa de Anta por el norte.

Por el sur, esta estructura parece conectarse con segmentos de la falla Tambomachay y del sistema de fallas de Pachatusan, para luego conformar o ser parte del sistema de fallas Zurite-Cusco-Urcos-Sicuani. Hacia el norte, esta se prolonga hasta Izcuchaca y la pampa de Anta, conectándose con la falla Zurite-Huarcondo de orientación este-oeste, estructura regional que es parte de la deflexión de la cadena andina.

Anteriormente, no se reportaron escarpes en el eje de la microcuenca del río Huatanay, algunos autores atribuyeron la actividad de esta estructura a desniveles de la superficie que muestran Ericksen et al. (1984) en su artículo después del sismo de 1950, pero esto es una interpretación, ya que estos pudieron originarse por licuefacción teniendo en cuenta que el nivel freático de la microcuenca del río Huatanay es superficial, entonces las posibilidad de producirse lateral spreading son elevadas. Carloto et al. (2011) afirman que la falla estaría sellada por depósitos cuaternarios de la formación San Sebastián.

En el presente estudio ponemos en evidencia actividad tectónica cuaternaria de la falla Cusco, traducida en escarpes de fallas y deformación de sedimentos cuaternarios, llegando a reconocer hasta dos tipos de movimientos. Al sureste de la microcuenca se observan los depósitos lacustres de la base de la formación San Sebastián deformados, sugiriendo una deformación de tipo compresiva (Fotografía 4.8). La falla en este sector tiene una dirección N 128° E y buzamiento promedio de 62° hacia el suroeste.

Fotografía 4.8 Depósitos lacustres de la secuencia inferior de la formación San Sebastián deformados por el movimiento inverso de la falla Cusco. Vista hacia el norte.
En la prolongación norte de esta estructura, al nivel de la localidad de Poroy, se puede observar el escarpe de falla que se encuentra afectando depósitos coluviales y aluviales con movimiento de tipo normal, estos depósitos se encuentran en contacto fallado con la formación Maras (Fotografía 4.9). El escarpe de falla genera un desnivel de la superficie de 5 metros y se encuentra conservado. Por consiguiente, estas reactivaciones de tipo normal son posteriores a los movimientos compresivos, asignando una edad Pleistoceno superior. Los clastos del depósito aluvial que se encuentran cerca al plano de falla se encuentran rotados, deformados, no guardando una coherencia de sedimentación (Fotografía 4.10), esta modificación tiene relación con el movimiento de la falla. Asimismo, al pie de la faz libre o escarpe de falla se observan depósitos aluviales cubiertos en parte por vegetación depositados en forma de cuñas, estos estarían asociados a las reactivaciones de la estructura geológica.

Finalmente, el análisis de fotografías aéreas e imágenes satelitales muestra a lo largo de las localidades de Poroy-Izcuchaca-pampa de Anta un claro lineamiento que generan cambios en la topografía y en el sistema de drenaje, estos asociados a movimientos de rumbo de tipo sinestral.

A pesar de la actividad antrópica, determinamos que la falla Cusco muestra reactivaciones cuaternarias, siendo así una estructura con una historia larga e importante en el tiempo geológico, que por su ubicación es necesario realizar estudios detallados con el propósito de caracterizar su potencial sismogénico, es así, con la finalidad de conocer la geometría y continuidad de la estructura a profundidad, realizamos perfiles geofísicos utilizando el método de tomografía eléctrica, los que serán descritos e interpretados en el Capítulo V.

Fotografía 4.9 Contacto fallado entre la Formación Maras y depósitos aluviales. Además se observa un escarpe conservado de 5 metros de altura. Vista hacia el sur.
d) Falla Chincheros

Se ubica a 8 kilómetros en dirección norte de la falla Tambomachay, con dirección este-oeste. Está representada por escarpes discontinuos que generan hasta 10 metros de desnivel de la superficie y que se emplazan a lo largo de 10 kilómetros sobre los 4200 m. s. n. m., formando parte de los sistemas de fallas cuaternarias y activas de la cordillera Oriental (Figura 4.5). Limita depósitos marinos del cretáceo inferior (bloque techo) con rocas cenozoicas pertenecientes a las capas rojas (bloque piso).

La falla Chincheros se ubica a 11 kilómetros de la ciudad del Cusco, sus segmentos se emplazan entre los 3700 y 4300 m. s. n. m., se observan claros movimientos de tipo normal que afectan depósitos aluviales, fluvio-glaciares y morrenas (Figura 4.5). Cabrera (1988) determina actividad holocena a partir de la identificación de depósitos coluviales en forma de cuñas al pie de los escarpes de falla (ver terminología Wallace, 1977, 1984); asimismo, observa que las fallas cortan depósitos de morrenas inconsolidados, terrazas aluviales recientes y suelo actual. Las morrenas son correlacionables con las datadas en Vilcanota-Ausangate por Mercer & Palacios (1977) y Mercer (1979), obteniendo edades de 28 000 y 14 000 años.

A partir de los análisis geomorfológicos de los escarpes de falla, se pueden discriminar distintas épocas de reactivación, esto a partir del estudio de la conservación del escarpe de falla y del cambio de pendiente del escarpe o de la faz libre; este análisis sugiere actividad elevada durante el Holoceno, ya que las morrenas y el suelo son desplazadas con un salto vertical de 4 metros, habiendo acumulación de eventos sísmicos. Cabrera (1988) realizó una reconstrucción de la topografía en los lugares donde realizó trincheras; en estas se pueden observar el plano semivertical de la falla, con buzamientos que varían entre 60° y 70° en dirección sur (Figura 4.6).
Figura 4.5 Imagen satelital mostrando los escarpes de fallas de Chincheros (ver flechas rojas), los rectángulos azules representan la ubicación de las trincheras (Cabrera, 1988).

El análisis cinemático de la falla nos indica movimientos de tipo normal con componente sinestral de los segmentos mayores, mientras que los segmentos menores o secundarios tienden a planos de fallas subverticales induciendo movimientos de tipo normal. Cabrera (1988), a partir del análisis poblacional de fallas y utilizando el método de inversión, propone como resultado extensión en dirección N 15° E para las reactivaciones holocenas, lo que da como resultado fallas de tipo normal con componente dextral. Nosotros creemos que la componente de rumbo es de tipo sinestral y que las estructuras principales de las fallas Tambomachay, Qoricocha y Chincheros son parte de un sistema pull-apart; y que los movimientos de tipo dextral son secundarios.

Trabajos de paleosismología en la falla indican que esta afecta dos niveles de paleosuelos (Cabrera, 1988), lo que indica que la reactivación de la falla generó ruptura de la superficie y que, utilizando las fórmulas empíricas de Wells & Coppersmith (1994) y Stirling et al. (2002) para calcular la magnitud máxima posible, da como resultado sísmos entre 5.8 a 6.5 de magnitud (Mw). Pero es bueno también aclarar que muchas veces sísmos de magnitudes elevadas no generan rupturas en la superficie, teniendo que emplear otros parámetros para realizar trabajos de peligro sísmico.

e) Falla Qoricocha

Se ubica a 6 kilómetros en dirección norte de la falla Tambomachay y es la prolongación sur de la falla Chincheros. Tiene una longitud de 8 kilómetros y se emplaza sobre una planicie ubicada entre 4000 y 4300 m. s. n. m.

El cartografiado de la falla, a una escala de 1:10 000, permite realizar una caracterización de los escarpes de falla y determinar morfológicamente la similitud con los escarpes de la falla Chincheros (Figura 4.7). Además de identificar que esta estructura afecta depósitos aluviales, fluvo-glaciares y morrenas, estas controlan y cortan depósitos volcánicos shoshoníticos cuaternarios (Kaneoka & Guevara, 1984; Carlier et al., 2005). Las morrenas que son afectadas por la falla con movimiento de tipo normal son también correlacionables con las datadas en Vilcanota-Ausangate por Mercer & Palacios (1977) y Mercer (1979), obteniendo edades de 28 000 y 14 000 años.

En 1986 parte de esta estructura se reactivó generando un sismo principal de magnitud 5.4 Mb (Fotografía 4.11) con ruptura de superficie promedio de 0.15 metros (Cabrera & Sébrier, 1998). La reactivación de la falla fue mediante un movimiento de tipo normal, cinemática que es compatible con los movimientos cuaternarios y holocenos reconocidos por Cabrera (1988) y Benavente et al. (2010) mediante estudios de paleosismología (Figura 4.10). El cálculo de tensores sugiere extensión con dirección norte-sur.

Asimismo, con los estudios de paleosismología podemos afirmar que esta estructura puede generar sísmos de hasta 6.5 grados de magnitud, ya que se observaron desplazamientos verticales de hasta 0.60 metros (Figura 4.8), que son mucho mayores al producido en 1986 (0.10 metros), este movimiento sísmico originó también deslizamientos entre la ciudad del Cusco y el valle del Vilcanota (Carlutto & Cuenca, 1987).

Finalmente, el sismo de 1986 produjo un enjambre de sísmos superficiales (aftershocks), registrado por la estación sísmica de Tambomachay (IGP), a lo largo de la falla Tambomachay y Pachatusan sugiriendo sus reactivaciones.

f) Falla Tamboray

Se ubica con dirección norte-sur entre los extremos occidentales de las fallas Tambomachay y Chincheros, emplazándose a lo largo de 3.5 kilómetros. Tiene 2 metros de escarpe, afecta con movimiento de tipo normal con componente de rumbo sinestral el basamento rocoso (capias rojas) y los depósitos aluviales del Cuaternario (Figura 4.9), modificando, asimismo, los cursos de los ríos por el movimiento de rumbo de tipo sinestral.

Los escarpes del sector norte desaparecen gradualmente, mientras que los del sector sur desaparecen abruptamente al nivel de la falla Tambomachay, aproximadamente (Figura 4.10). Los escarpes se encuentran degradados y el plano de falla tiene una inclinación hacia el oeste, donde se aprecian cambios en la pendiente relacionados a la acumulación de reactivaciones. Su dirección y cinemática particular sugiere que es parte de una deformación de un sistema strike-slip, siendo este efecto de la deformación secundaria.

g) Falla Pachatusan

Está representada por segmentos discontinuos y paralelos que se emplazan en un área de 21 kilómetros de largo por 3.5 kilómetros de ancho con dirección promedio N 130° E, y en altitudes que varían entre 4100 y 4300 m. s. n. m. Se ubica al sureste de la ciudad del Cusco, aproximadamente a 5 kilómetros de distancia. Es parte de las fallas cuaternarias y activas ubicadas entre la cordillera Oriental-Altiplano y, aparentemente, es una prolongación de las fallas Chincheros y Qoricocha.

Cabrera (1988) describe los valles glaciares cortados por la falla Pachatusan con un movimiento de tipo normal, donde el plano de falla buza con un ángulo de 50° y 70° al suroeste. Para el presente trabajo realizamos el cartografiado a escala 1:5 000, que junto al análisis geomorfológico, cinemático y geométrico, nos permitió comprender el desarrollo progresivo y estilo estructural de la falla Pachatusan durante el Cuaternario (Figura 4.11).
Figura 4.7 Escapes de las fallas Qoricocha y Chincheros: a) escarpe de falla del sector este de la falla Qoricocha, b) conexión de escarpes de falla en Qoricocha, c) escarpe principal y secundarios en la falla Chincheros.
Fotografía 4.11 Vista de la falla activa Qoricocha. El escarpe en este sector tiene 3 metros de altitud, dando evidencia de la acumulación de eventos co-sísmicos en el sector. En 1986 la falla generó una ruptura superficial de 0.1 a 0.20 m, originando un sismo de 5.6 Mb de magnitud.

Figura 4.8 Trincheras en la falla Qoricocha donde se pueden observar las cuñas coluviales y desplazamientos verticales de hasta un metro precedentes a la reactivación de 1986.
Figura 4.9 Sector norte de la falla Tamboray donde se observa el desplazamiento vertical y la variación lateral de los cursos de los ríos por efecto del movimiento de rumbo sinestral.

Figura 4.10 Sector sur de la falla Tamboray donde se observan depósitos aluviales afectados por la falla; asimismo, se puede observar el trazado de la falla de Tambomachay.
Figura 4.11 Mapa estructural del Sistema de Fallas Pachatusan ubicado al noreste de la ciudad del Cusco. Las líneas de colores muestran una cronología de rupturas co-sísmicas a partir del análisis morfo-estructural, por ejemplo, las fallas representadas por las líneas de color negro corresponden al trazo principal de la falla, donde se observaron la mayor acumulación de eventos sísmicos, facetas triangulares, morrenas desplazadas, lagunas de colapso, entre otras evidencia; las fallas representadas por líneas de color rojo son las rupturas superficiales más recientes.
De norte a sur se observa un escarpe de falla principal, con un salto vertical de 800 metros, que pone en contacto rocas volcánosedimentarias con depósitos aluviales, fluvio-glaciares y morrenas (Fotografía 4.12). Asimismo, se observan facetas triangulares y, en la parte inferior, reactivaciones cuaternarias con saltos verticales que varián entre 50 metros y 1 metro, estas afectando depósitos fluvio-glaciares, morrenas y formando sand-ponds o charcas de agua alineadas a lo largo de la traza de falla (Fotografía 4.13). En esta traza principal se reconocieron distintos movimientos de la falla, siendo los principales, del más antiguo al más reciente: movimientos de tipo sinestral, normal-dextral, normal sinestral, normal y, adyacente al cerro Atlas, al poblado de Huacoto y Saucocalla (Figura 4.11), se observaron desplazamientos de tipo inverso, los que fueron corroborados con el análisis microtectónico (Fotografía 4.14). La reactivación de esta estructura regional generó rupturas superficiales en forma paralela, en las que se pudo determinar el movimiento más reciente para cada caso.

El trazo principal ubicado en el sector noreste, y representada por líneas de color negro (Figura 4.11), presenta escarpes con mayores saltos verticales (Fotografía 4.15), es allí que fue posible reconocer movimientos de tipo sinestral, inverso, dextral y normal; éstas reactivaciones generaron escarpes paralelos, quedando evidencias geomorfológicas y cinemáticas de ellas. Por tal motivo fue posible caracterizar cada uno de los escarpes, pudiendo sugerir los segmentos que se reactivaron simultáneamente.

En la parte inferior del escarpe principal (Fotografía 4.16) se aprecian escarpes relacionados con las últimas reactivaciones de la falla, los que se emplazan en forma paralela y con desplazamientos de la superficie entre 5 y 0.40 metros, dándonos una idea de la acumulación de eventos sísmicos. El escarpe de 5 metros de salto afecta depósitos glaciares generando la formación de charcas de aguas y sedimentación de material fino de color gris oscuro (depósitos palustres), estos sedimentos finos son posteriormente deformados con movimiento de tipo normal (Fotografía 4.16). Este análisis sugiere que este segmento de falla se reactiva posiblemente con rupturas superficiales de medio metro.

Los trazos adyacentes al principal, y representados por líneas de color verde (Figura 4.11), afectan con movimiento de tipo inverso y vergencia hacia el sur, depósitos aluviales, fluvio-glaciares y morrenas posiblemente relacionadas a la última glaciación (11 000 años), (Mercer & Palacios, 1977 y Mercer, 1979). Este trazo de falla presenta una dirección aproximada este-este, llegándose a conectar con la traza principal de falla. Su geometría y cinemática nos indica que es parte de un sistema strike slip de tipo sinestral.

Fotografía 4.12 Escarpe principal de la falla Pachatusan que pone en contacto rocas volcánosedimentarias con depósitos glaciares y fluvio-glaciares. Además se pueden observar el desplazamiento vertical de las morrenas producto del movimiento de tipo normal. La altura de estos escarpes es de aproximadamente 100 metros.
Fotografía 4.13 Escarpe de la falla Pachatusan de 10 metros de altitud, generando lagunas de colapso o sand-ponds.

Fotografía 4.14 Escarpe de falla de tipo inverso, se observa como el movimiento inverso de la falla puso en contacto rocas de basamento con depósitos cuaternario. Asimismo se observa los depósitos de cobertura vegetal plegados producto del movimiento de la falla; este escarpe tiene una altura de 2 metros.
Fotografía 4.15 Escarpe principal de la falla Pachatusan que pone en contacto rocas volcánicas con depósitos glaciares y fluvio-glaciares. Además se pueden observar el desplazamiento vertical de las morrenas producto del movimiento de tipo normal. La altura de estos escarpe es de aproximadamente 100 metros. Así mismo se pueden observar cambios de pendiente de la faz libre del escarpe evidenciando acumulaciones de eventos sísmicos.

Fotografía 4.16 Trinchera natural donde se observa uno de los planos de la falla Pachatusan, donde en la parte superior se ve el contacto fallado de rocas volcánicas con depósitos cuaternarios; hacia la izquierda se pueden observar los depósitos glaciares y fluvio-glaciares deformados con bajada hacia el sur producto del movimiento de tipo normal de la falla. En este sector no se aprecia un escarpe de falla continuo ya que fue alterado por la actividad antrópica.
Escarpes con dirección N 115° E se ubican al sur de los escarpes con movimiento inverso, mencionados en el párrafo principal, aproximadamente a 0.70 kilómetros de distancia en dirección sur (Figura 4.11). Este grupo de segmentos de fallas se extiende a lo largo de 6 kilómetros y se caracterizan por tener un movimiento de tipo normal con componente de rumbo dextral, afectando depósitos fluvio-glaciares, aluviales, lacustres y morrenas holocenas (Fotografía 4.17). El extremo occidental de la falla se caracteriza por tener una geometría tipo echelón, llegando a extender sus escarpes en un ancho aproximado de 0.50 kilómetros, y formando figuras sigmoidales como consecuencia del movimiento de rumbo, y formando depresiones que favorecieron las formaciones de lagunas.

A su vez, dicha prolongación del extremo occidental limita con escarpes mejor conservados, es decir menos erosionados, que se emplazan a lo largo de 6.5 kilómetros en forma discontinua con movimiento tipo normal y componente sinestral. Dicha traza de falla, constituida por segmentos de 1 kilómetro de longitud, afectan depósitos glaciares y morrenas (Fotografía 4.18) posiblemente relacionadas con la última glaciación (11 000 años), cortando estos depósitos y generando desniveles de hasta 5 metros, dando idea de la actividad sísmica con ruptura superficial. Asimismo, se pueden observar variaciones en la pendiente de la faz libre o cara libre de la falla. En algunos casos, cómo en el cerro Pachatusan, se observa que además de la buena conservación de los escarpes de falla, estos muestran una clara variación en la pendiente, generando escalones en las morrenas laterales y facilitando la reconstrucción de la deformación ya que en las caras libres de los escarpes se encuentran ciástos estriados que nos sugieren diferentes movimientos de la falla (Fotografía 4.19).

Los trabajos de campo detallados realizados nos permitieron identificar rupturas superficiales frescas, que nos sugieren que el sismo de 1950 podría estar relacionado con la falla Pachatusan y no con la falla Tambomachay como sugieren otros investigadores. En consecuencia, el sismo de 1950 posiblemente sólo generó fenómenos gravitacionales, como lo describen Ericksen et al. (1954) y no rupturas primarias.

Finalmente, a lo largo del Sistema de Fallas Zurite-Cusco-Urcos-Sicuani se observan rocas volcánicas cuyas dataciones dan edades cuaternarias y cuyos análisis geoquímicos sugieren que estas rocas ascendieron por zonas de debilidades verticales a subverticales, por consiguiente las fallas activas de este sistema facilitaron el emplazamiento de estas rocas que son conocidas como la Formación Rumicolca (Fotografía 4.20).
Fotografía 4.18 Escarpe de falla afectando morrenas laterales de 11 000 años con movimiento de tipo normal. Las flechas rojas señalan la traza de falla. Vista hacia el norte.

Fotografía 4.19 Escarpes de falla subparalelos afectando morrenas con desplazamientos de 20 metros y generando escalones indicando la actividad tectónica y la consecuente acumulación de eventos sísmicos. Vista hacia el sur.
h) Falla Urcos

Se ubica al sureste de la ciudad del Cusco, con dirección noroeste-sureste y buzamiento hacia el suroeste. Separa rocas paleozoicas (bloque techo) con rocas cenozoicas (bloque piso), es también una estructura antigua con evidencias de reactivación durante el Cuaternario.

Se emplaza a lo largo de 22 kilómetros donde es posible reconocer tres segmentos. El primer segmento ubicado desde las faldas del cerro Huallaran (este del poblado de Oropesa) hasta la hacienda Choccepujo, este segmento se caracteriza por afectar depósitos aluviales y coluviales con movimientos de tipo inverso, además se puede observar que los cursos de los ríos son alterados lateralmente con movimientos sinestrales producto de los movimientos de la falla.

El segundo segmento se emplaza desde el cerro Pinagua hasta la localidad de Andahuaylillas, y se caracteriza por cortar los volcánicos cuaternarios Rumicolca datados por K-Ar en una edad de 0.7 millones de años (Kaneoka & Guevara, 1984).

El tercer segmento, se ubica entre las localidades de Andahuaylillas y Urcos. Se observan segmentos a lo largo del río Vilcanota, afectando las terrazas fluviales y abanicos aluviales con movimientos de tipo normal. La terminación oriental de la falla cruza el borde este del lago Urcos, que podría ser producto de las reactivaciones de la falla.

Según Cabrera (1988), las reactivaciones recientes de la falla se ubican en las depresiones de Lucre y Andahuaylillas, éstas estarían ligadas a la tectónica en extensión. La modificación del sistema de drenaje fue modificada también por el vulcanismo cuaternario, para el caso de Lucre, generando un cambio en la dirección de los drenajes y en especial del río que desemboca hacia el sector de Huambutlo.

En la actualidad, a lo largo del tercer segmento se ubican sismos superficiales de magnitudes bajas.

i) Falla Paucarpata

Se ubica en la margen izquierda del río Vilcanota, entre los poblados de Tío y Paucarpata, extendiéndose a lo largo de 18 kilómetros con una dirección noroeste-sureste, y cruzando los flancos occidentales de los cerros Pumayanja y Runtojay.

Se caracteriza por presentar escarpes erosionados que se encuentran afectando depósitos coluviales y aluviales antiguos. No se pudieron identificar estrías en los escarpes de falla, pero los desplazamientos de tipo normal que se observaron en los depósitos cuaternarios nos dan una idea de parte de su historia. Vale la pena resaltar que los materiales afectados se encuentran cubiertos por...
depósitos de 2.50 metros de espesor de origen aluvial, no deformados, más la cobertura vegetal que tiene espesores que varían entre 0.50 metros y 1 metro.

Fue denominada falla Paucarpata debido a que en este sector la falla se divide en tres segmentos, además por ser la zona donde se evidencian de mejor manera los desplazamientos de tipo normal. Por último, los escarpes de falla coinciden con las coronas o zonas de despegue de antiguos deslizamientos de los cerros Pumayanja y Runtojay y Jarjeta, sugiriendo su posible relación.

j) Falla Amaru

Se ubica en el Altiplano del sur peruano, evidencias morfológicas muestran la actividad tectónica reciente en la región del Cusco, que nos sugiere que a pesar de su baja sismicidad, esta región ha sufrido sismos superficiales con ruptura visible, que deben ser considerados en las evaluaciones de peligro sísmico. Con la falla Amaru ponemos en evidencia deformación reciente con ruptura superficial a lo largo de aproximadamente 50 kilómetros (Figura 4.14) en las alturas de la margen derecha del río Vilcanota (provincia de Canchis - departamento de Cusco).

Benavente & Delgado (2012) exponen las características morfoestructurales de esta falla activa, no reconocida previamente, además establecen su importancia en el contexto tectónico del Altiplano y de la cordillera Oriental sur peruano.

La falla Amaru de dirección noroeste-sureste, se reconoce por rupturas de la superficie produciendo un desnivel vertical de 10 metros que se prolonga de manera discontinua sobre una longitud de 50 kilómetros. A lo largo de la traza de falla se puede observar que la falla afecta la topografía actual, afectando morrenas laterales y depósitos fluvio-glaciares (Figura 4.12).
En los sectores norte y sur de la falla se observa un escarpe principal acompañado por segmentos de fallas secundarias a lo largo de 11 y 26 kilómetros, respectivamente; ubicados en la margen izquierda del río Salca en dirección al poblado de Mucco y las localidades de Santa Bárbara y Caricari, respectivamente. El sector intermedio de la falla de aproximadamente 18 kilómetros, ubicado entre los poblados de Combapata y Sicuani, muestra un mayor número de segmentos paralelos entre sí, de longitudes similares, que se encuentran limitadas hacia el noreste por un escarpe mayor degradado, y que separa los mencionados depósitos glaciares con rocas volcánicas sedimentarias del grupo Mitu y rocas volcánicas cenozoicas (Figura 4.13).

Figura 4.13 Cartografiado al detalle de parte del segmento central activo de la falla Amaru, donde se observan nueve familias de morrenas afectadas por la estructura.
Los escarpes de fallas que cortan los depósitos cuaternarios tienen un aspecto fresco, en muchos de los casos hay una variación en la pendiente del plano de falla, lo que nos permitió junto al análisis microtectónico reconstruir antiguos movimientos de la falla (Fotografía 4.21 y 4.22). Asimismo, se pudo identificar que las reactivaciones más recientes en los tres sectores, está levemente degradada y al pie de su faz libre depósitos coluviales.

Cabe mencionar que se tomaron muestras para determinar una cronología de reactivaciones, aunque los datos no se presentarán en este trabajo por estar aún en análisis en el laboratorio. Las muestras son de trincheras transversales a la falla con la finalidad de obtener la fecha de sus más recientes reactivaciones; y muestras de las morrenas laterales afectadas por los diferentes segmentos de falla para cosmogénicos Be$_{10}$.

En el sector norte y sur se puede observar que el movimiento más reciente de la falla afecta morrenas con un desplazamiento de tipo normal. En el sector central se identificaron escarpes de fallas con direcciones N 150° E a N 120° E y con buzamientos hacia el sur y el norte, además de diferentes cinemáticas, donde posiblemente la reactivación más reciente es de tipo inverso.

El análisis morfológico, geométrico y cinemático de los escarpes del sector central nos permite sugerir una cronología de esfuerzos para los últimos 5 millones de años y un estilo de deformación (Figura 4.14), a partir del análisis poblacional de fallas, análisis de familias de estrías y cálculo de tensores de esfuerzos en el programa para geología estructural FaultKin 5 realizado y actualizado por Allmendinger et al. (2012), donde se procesaron 350 medidas de estrías, información recopilada del análisis de tectoglifos.

En la Figura 4.14 se muestran, representadas por flechas, las direcciones de los esfuerzos y las trazas de fallas en diferentes colores con la finalidad de mostrar una cronología de reactivaciones, es así que las trazas en color blanco son interpretadas como la última reactivación del sistema por estar afectando la topografía actual con un movimiento inverso, la falla tiene un buzamiento casi vertical (82° hacia el sur) (Fotografía 4.23), el cálculo del tensor del esfuerzo principal (σ_1) indica un acortamiento promedio con dirección N 40° E.

Las fallas representadas por líneas rojas cortan morrenas laterales y depósitos fluvioglaciares (Figura 4.21), además de alinear lagunas o charcas de agua. El movimiento más reciente nos indica un movimiento de tipo normal con un desplazamiento vertical de 0.60 metros. Se observan fallas normales con buzamientos opuestos formando sectores grabens. Las morrenas afectadas podrían estar relacionadas con la glaciaciación de hace 11 000 años. El cálculo del tensor del esfuerzo principal (σ_1) indica una dirección de extensión promedio a N 12° E.
Las fallas en color azul, muestran estructuras con posibles reactivaciones durante el cuaternario y son agrupadas por la compatibilidad geométrica-cinemática. Los escarpes se encuentran más degradados y su faz libre presenta cambios en la pendiente, donde se pudieron observar diferentes direcciones de estrías en cada una de las partes. Se realizó una cronología de las estrías y de los tectoglifos que nos permitieron proponer tres estados de esfuerzos: para el Pleistoceno superior un esfuerzo principal (σ₁) que indica una dirección de extensión promedio a N 80° E; para el Pleistoceno medio a superior el esfuerzo principal (σ₁) indica acortamiento N 98° E; y para el Pleistoceno inferior el esfuerzo principal (σ₁) indica acortamiento N 8° E.

Asimismo, se pudo observar estrías anteriores a las descritas en el párrafo anterior, tanto en la parte baja como alta del área de estudio, indicando un esfuerzo principal (σ₁) asociado a extensión con dirección N 80° E y un esfuerzo principal (σ₁) asociado a compresión con dirección N 55° E, datos que son compatibles con la deformación plicena superior e inferior respectivamente observadas por Cabrera (1988) y Lavenu, A. (1988).

Luego, se construyó una sección geológica a partir de los datos estructurales de los afloramientos, la misma que nos permite (Figura 4.15) proponer que este sector del Altiplano presenta un estilo de deformación compresivo, de ahí el incremento en el esfuerzo litosférico vertical que es compatible con la partición de esfuerzos generado por la subducción; los períodos de extensión son entonces una compensación o acomodamiento de la corteza superior.

También se determinó que la última reactivación de la falla Amaru (Fotografía 4.23 y 4.24) fue con un movimiento de tipo inverso, deformación que afectó la cobertura vegetal, este último estado de esfuerzos tectónicos tendría relación con las deformaciones compresivas observadas por Benavente et al. (en revisión) en las localidades de Corcca, Pilpinto, Accha, Acomayo, Paruro y Capacmarca. De la información sismológica instrumental podemos decir que el mecanismo focal hallado para el sismo de Capacmarca del 2003 dio como resultado un mecanismo de tipo inverso (comunicación personal Hernando Tavera), punto que ratificaría el estado de esfuerzo actual compresivo en el área de estudio; además este tendría relación con los mecanismos focales inversos hallados por Stauder (1975) y Suárez et al. (1983, 1990) a lo largo de los Andes peruanos.
Figura 4.14 El mapa muestra en líneas de color rojo la falla Amaru, las líneas negras son fallas cuaternarias y activas de la región Cusco (tomado de Benavente & Delgado, 2012). La figura del lado superior derecha es un zoom del sector central de la falla, muestra una propuesta de paleoesfuerzos para los últimos 5 millones de años hallado a partir del procesamiento de 350 datos de microtectónica.
Fotografía 4.23 Escarpe de falla inversa de Amaru. Al fondo se puede ver el valle del Vilcanota.

Figura 4.15 Sección estructural a partir de datos estructurales de los afloramientos, en ella se hace una vista de detalle (rectángulos rojos) donde se muestra la disposición y ubicación de las fallas normales con buzamientos opuestos.
Fotografía 4.24 Muestra los movimientos inversos de la falla, ubicadas en el frente de deformación. Asimismo, se puede observar que el suelo actual fue afectado con movimiento de tipo inverso.
Finalmente, el área de estudio se ubica en una zona donde la placa de Nazca se contornea; Schneider & Sacks (1987) muestran la variación de los esfuerzos en una zona donde se contornea la placa de Nazca a partir del análisis de sismos profundos (100 kilómetros), queda por definir si habría alguna relación con la deformación en superficie. Los resultados que se exponen en esta parte conciernen a la evolución plio-cuaternaria de parte del Altiplano sur-peruano, donde en base a trabajos de campo se pudieron reconocer cambios en el régimen tectónico. Los datos muestran estados de esfuerzos compresivos y extensivos durante el Plioceno, datos que son coherentes con los señalados por Mercier et al. (1992) y Sébrier et al. (1985), Cabrera (1988) y Lavenu & Mercier (1991). El evento compresivo estaría ligado a la disminución del ángulo de subducción de la placa oceánica (Espurt et al., 2008), proceso que generaría mayor fricción, acoplamiento entre las placas de Nazca-Sudamericana y consecuente levantamiento de los Andes; mientras que el evento de extensión estaría ligado a un tiempo de reacomodo que sirvió para el relleno de depresiones.

k) Falla Antahuire
Se ubica entre la localidad de Marangani y el cerro Jatuntiana. Constituye la prolongación de la falla Amaru y se emplaza a lo largo de las laderas de los cerros Huallo, Pichacani, Huiscachane y Sumara que se ubican en la margen izquierda del río Vilcanota. Asimismo, esta estructura se prolonga hasta Ayaviri ubicado en la región Puno.

Se divide en dos segmentos, el primero adyacente a la localidad de Marangani con una longitud de 9 kilómetros, donde se aprecian escarpes erosionados afectando depósitos aluviales y coluviales antiguos con movimientos de tipo normal (Fotografía 4.25). El segundo segmento ubicado a un kilómetro en dirección norte de La Raya (límite Cusco-Puno), se pueden apreciar escarpes más frescos, que afectan depósitos aluviales, palustres y a su vez que alteran el curso del río Santa Rosa. Su prolongación coincide con la falla activa de Ayaviri, que se extiende a su vez hasta el lago Titicaca en segmentos de 2 a 5 kilómetros.

Sistema de fallas Casacunca-Acomayo-Langui-Layo (SFCALL)

Este sistema se reactivó en segmentos a lo largo de una longitud aproximada de 170 kilómetros con una dirección preferencial noroeste-sureste. La parte norte se ubica en el Altiplano occidental del sur del Perú; mientras que la parte central y sur, desde la laguna de Pomacanchi. Constituye el límite entre el dominio Altiplano occidental con el dominio Altiplano oriental, que se extiende hasta las localidades de Langui y Layo. En el extremo norte del sistema afloran rocas de la formación Soncco, compuestas por estratificaciones laminares de areniscas grises con buzamientos semiverticales, que favorecen el desplazamiento de la falla (Fotografía 4.26). El extremo sur aflora al sur de la localidad de Acomayo, mediante escarpes de longitudes que varían entre ~2 y ~4 kilómetros, cortando depósitos aluviales con movimientos inversos y normales.

En el sector central se desarrollaron diversos trabajos (entre Paruro y Acomayo), donde James & Romero (1996) y Carlotto (2002) estudian la evolución de cuencas sin-orogénicas miocenas, éstas ligadas a la actividad de dicho sistema de fallas; asimismo Carlier et al. (1996) menciona la existencia de fallas inversas que hacen aflorar gabros datados del Eoceno.

Con el presente trabajo se pone en evidencia que este sistema continuó su actividad hasta la actualidad; actividad que queda registrada en escarpes de fallas conservados, afectando depósitos recientes. Entre los segmentos principales tenemos:

![Fotografía 4.26 Estratificación de la formación Soncco a la altura de la localidad de Casacunca.](image)

a) Falla Casacunca

Se extiende con dirección N 140° E y buzamiento hacia el suroeste entre los poblados de Casacunca y Ccorca. Muestra reactivaciones a lo largo de 10 kilómetros, cortando depósitos fluvio-glaciares y glaciares. El buzamiento de las areniscas grises de la formación Soncco favorece el desplazamiento de tipo normal de la falla. Se ubica a 20 kilómetros de la ciudad del Cusco y a 6 de la pampa de Anta.

Se caracteriza por presentar un trazo continuo, donde el sector sur tiene un escarpe de 10 metros; mientras que el escarpe norte presenta un desnivel de 5 metros, sugiriendo en ambos casos acumulaciones de eventos sísmicos. El escarpe de falla de 10 metros se encuentra mejor conservado y son visibles las variaciones en la pendiente de la faz libre (Fotografía 4.27).
Se reconocieron movimientos de tipo normal al pie de facetas triangulares, estos movimientos desplazan depósitos aluviales; asimismo, la presencia de las facetas sugieren indicios de actividad de la falla.

No se tienen registros instrumentales de sismos en este sector, pero según comunicación con pobladores del lugar (Fotografía 4.28) indican sentir constantemente sismos de intensidades bajas, posiblemente reactivando un deslizamiento y poniendo en peligro al poblado de Casacunca (Benavente & Delgado, 2011).

b) Falla Yaurisque

Se ubica a 12 kilómetros al suroeste de la ciudad del Cusco. Se caracteriza por tener dos escarpes de 15 kilómetros subparalelos separados por 5 kilómetros. Tienen dirección principal N 130° E y buzamiento hacia el suroeste y noreste, estos variar entre 65° a 75°.

El segmento que muestra mayores características de actividad tectónica es el occidental, este tiene un escarpe de hasta 25 metros y se encuentra afectando depósitos aluviales con movimientos de tipo normal (Fotografía 4.29). En las prolongaciones de estos escarpes cuaternarios se pueden observar facetas triangulares que indican actividad más antigua. El escarpe de 25 metros sugiere acumulaciones de rupturas superficiales, es decir acumulaciones de eventos sísmicos de grandes magnitudes.

El segmento oriental muestra un escarpe de menor altitud o menor desnivel (1 metro) pero mejor conservado y afectando depósitos aluviales con movimiento de tipo normal (Fotografía 4.30). En su prolongación sur no se observan evidencias de ruptura superficial, salvo al llegar a las inmediaciones de la laguna Huaj Huacocha donde aflora la falla activa del mismo nombre. Estas fallas son reactivaciones de antiguas estructuras regionales que muestran que aún siguen siendo activas, las reactivaciones son por segmentos bien definidos.
Fotografía 4.28 Reconocimiento de campo con los pobladores del lugar.

Fotografía 4.29 Segmento occidental de la falla Yaurisque, se puede observar el escarpe de tipo normal y facetas triangulares de 25 metros de altitud.
c) Falla Rondocan
Se ubica a 15 kilómetros al sureste de la ciudad del Cusco, y entre 2 y 3 kilómetros de las localidades de Rondocan y Paruro. Tiene una dirección promedio de N 130° E y buzamientos que varían entre 78° y 65° al suroeste.

Se emplaza a lo largo de 35 kilómetros donde fue posible identificar escarpes con diferentes estados de conservación, sugiriendo así una cronología de reactivaciones (Fotografía 4.31). Asimismo, se puede observar que esta falla presenta segmentos paralelos prolongándose a lo largo de 5 kilómetros de longitud.

El segmento que muestra mayores características de actividad tectónica es el norte, donde se observa una traza de 6 kilómetros afectando depósitos cuaternarios con movimientos de tipo normal y escarpes conservados que generan desniveles en la superficie de hasta 10 metros (Fotografía 4.32). En las prolongaciones de este segmento se observan escarpes erosionados y facetas triangulares que afectan cobertura cuaternaria, los que se interpretan como fallas de edad Pleistocena (Fotografía 4.32). Estos segmentos pleistocenos se prolongan con longitudes de 7 kilómetros en promedio, por el norte hasta Yaurisque y por el sur hasta Acomayo.

El desnivel de la superficie (10 metros), producto de la actividad de la falla, sugiere acumulaciones de eventos sísmicos, lo que es propicio para realizar estudios de paleosismología. Asimismo, se pudo observar que las gravas de origen aluvial en las zonas adyacentes a la falla, presentan grietas que cortan los clastos de forma uniforme, siendo un claro ejemplo de la actividad cosísmica relacionada con la actividad de la falla (Fotografía 4.33).

Finalmente, la sismicidad instrumental nos indica sismos superficiales (< 30 kilómetros) en las zonas adyacentes a la falla Paruro en los años de 1994, 2003, 2006 y 2009, según los catálogos del Servicio Geológico de los Estados Unidos (USGS) e Instituto Geofísico del Perú (IGP), los que fueron corroborados por conversaciones con los pobladores.
Fotografía 4.31 Escarpe de falla afectando depósitos aluviales y glaciares con movimiento de tipo normal. Las flechas rojas señalan el trazo de falla.

Fotografía 4.32 Escarpe de falla afectando cobertura cuaternaria con movimientos de tipo normal. El escarpe de falla tiene una altitud de 10 metros y se encuentra conservado.
d) Falla Huaj Cacocha

La laguna Huaj Cacocha se encuentra a 4350 m. s. n. m. y se encuentra limitada hacia el norte y sur por fallas normales que afectan principalmente depósitos glaciares y morrenas. Las estructuras se emplazan a lo largo de 17 kilómetros con una dirección N 105° E y buzamiento hacia el sur.

En la Figura 4.16 se puede observar en detalle la parte central de la falla, donde la traza que se ubica al sur de la laguna afecta morrenas y depósitos glaciares (10 000 años) que provenían del cerro Uñajori. Asimismo, la traza que se ubica al norte de la laguna, afecta depósitos lacustres, palustres y aluviales, pudiéndose observar al pie de la faz libre del escarpe depósitos coluviales asociados a la última reactivación. Por expresión morfológica, se puede deducir que el trazo del sector sur es el más reciente.

En detalle, los escarpes ubicados en el sector sur tienen una geometría sigmoidal (Figura 4.17) que es coherente con un movimiento de rumbo sinestral. Por consiguiente, las fallas de Huaj Cacocha son de tipo normal con componente sinestral, generando desniveles de 15 metros en la superficie a causa del movimiento de la falla, indicando una nucleación de paleosismicidad, donde es necesario realizar trabajos de paleosismología con la finalidad de estimar períodos de retorno.

En noviembre del 2006, el IGP reportó en este sector un sismo de magnitud 4.0 M con una profundidad de 9 kilómetros, lo cual demostró la actividad tectónica de este segmento de falla, debiendo realizar un monitoreo de esta y zonas adyacentes.

e) Falla Zangarará

Suárez et al. (1983) ponen en evidencia, mediante la utilización de imágenes satelitales y fotografías aéreas, un escarpe de falla de 6 kilómetros de longitud, a 3 kilómetros del poblado de Zangarará; posteriormente, con trabajos de campo determinaron que dicha estructura presenta un escarpe de 50 metros y muestra evidencias de movimientos de tipo normal, relacionando con la actividad tectónica cuaternaria extensional, como la observada por Lavenu (1978), en el Altiplano peruano y boliviano.
Figura 4.16 Escarpes de fallas adyacentes a la laguna Huaj Caccoha. Los escarpes ubicados en el sector sur afectan la morrena frontal con movimiento de tipo normal, haciendo colapsar parte de ella; mientras que los escarpes ubicados al norte de la laguna son más rectilíneos y afectan depósitos glaciares y aluviales provenientes del cerro Uñajori. Las flechas rojas indican los escarpes de falla.

Figura 4.17 Escarpes de falla afectando morrenas y depósitos aluviales al sur de la laguna Huaj Huacocha (flechas rojas). Se puede apreciar la geometría de la falla de tipo sigmoidal.
Posteriormente, Sébrier et al. (1985) observan un lineamiento que controla cuencas lacustres ubicadas entre 3650-3950 metros y determinan dos trazos de fallas cuaternarias ubicadas en la margen este de las lagunas Pomacanchi y Languí-Layo, donde reportan abanicos y terrazas aluviales deformadas con movimientos de tipo normal. Por posición estratigráfica, y tomando criterios de la cronología de formaciones aluviales en el sur del Perú, estiman que estos depósitos estarían relacionadas con el último interglacial (125 000 años), así mismo interpretan que este segmento de la falla no se reactivó en los últimos 10 000 años, a partir de la conservación del escarpe. Con estudios recientes establecemos que la falla Zangarará no se restringe a 6 kilómetros de longitud; todo lo contrario, esta se extiende a lo largo de 20 kilómetros. El escarpe estudiado por Suárez et al. (1983) y Sébrier et al. (1985), si bien es cierto es el que tiene mejor expresión morfológica y mayor desplazamiento vertical, se cree que está relacionado con la actividad Plio-cuaternaria. Mientras que la actividad más reciente, gracias al nuevo cartografiado, se determinó que se encuentra a 400 metros por encima del escarpe que limita el piedemonte (Figura 4.18).

El escarpe Plio-cuaternario con dirección N 145° E, y buzamiento de 65° al sureste en promedio, se caracteriza por mostrar facetas triangulares de hasta 120 metros de altitud (Fotografía 4.34) y una aparente variación del sistema de drenaje que se acomoda a movimientos de rumbo de tipo sienestral. Los escarpes que muestran mejores características de conservación se ubican al noreste y sureste de la localidad de Zangarará. Los escarpes del sector norte muestran terminaciones de tipo echelón o cola de caballo. El trazado principal de la falla en este sector de rumbo casi norte-sur es rectilíneo, y afectan depósitos cuaternarios con movimientos de rumbo de tipo normal con componente sinestral. Los trazos que llegan a formar geometrías en echorón o fallas sintéticas tienen direcciones noroeste-sureste y afectan depósitos cuaternarios con movimientos de rumbo de tipo normal. Estas reactivaciones recientes tienen escarces que varían entre 0.50 y 2.5 metros, donde se nota claramente la deformación de los depósitos cuaternarios (Fotografía 4.35).

El segmento de falla, ubicado al noreste del poblado de Zangarará, se caracteriza por presentar un escarpe de 15 metros de altitud, afectando morrenas y depósitos aluviales, generando asímismo facetas triangulares (Figura 4.20 y Fotografía 4.36). Por las características presentadas, se considera a la falla Zangarará como activa, dejando como evidencias acumulaciones de reactivaciones tectónicas y consecuentes generación de sismos.

f) Falla Tungasua

Se ubica al este del poblado del mismo nombre y se extiende a lo largo de los cerros Sichupujiu y Yanacoro, es una falla de tipo normal que tiene una dirección N 155° E y buzamiento hacia el oeste. Morfológicamente no tienen la misma expresión de conservación que los anteriormente descritos, ya que no hay afloramientos cuaternarios a lo largo de la falla. El análisis de las imágenes satelitales (Land Sat y Google Earth) nos permitieron observar fracturas frescas en el basamento rocoso constituido por calizas y areniscas cretácicas; asimismo, se puede observar que el sistema de drenaje es modificado por la falla, de donde podemos deducir movimientos de rumbo de tipo sienestral. Los registros históricos indican que las localidades de Tungasua y Yanaoco fueron afectados por sismos de elevada intensidad; los pobladores de los lugares indican que sus antepasados describían fuertes movimientos de la tierra acompañados con agrietamientos del mismo. Los catálogos sísmicos del IGP y USGS indican sismos superficiales, ambos de magnitud 4.8 (MI), en julio de 1950 y febrero de 1972, respectivamente. Además del sismo de agosto del 2003 donde el IGP reportó un sismo de magnitud 3.6 (MI) a 7 kilómetros de profundidad.

g) Falla Languí-Layo

La falla Languí-Layo fue descrita por Sébrier et al. (1985) como una estructura ubicada al este de la laguna de Languí-Layo. En el presente trabajo, en base al cartografiado y estudio de cada uno de los escarces, se proponen tres segmentos a partir de criterios morfológicos, geométricos y cinemáticos. El segmento norte se ubica al noreste del poblado de Langui, se caracteriza por ser un trazo continuo con dirección aproximada a este-oeste y buzamiento hacia el sur; se extiende a lo largo de 6 kilómetros. El trazo de falla afecta, con movimientos de tipo normal, dos terrazas aluviales y depósitos coluviales provenientes de cerros adyacentes a los poblados de Collca y Ccallya. Esto nos permite considerar actividad de tipo normal durante el Cretácico o gran parte de él. El análisis de microtectónica nos indica también movimientos de tipo normal con pitch subverticales (80°-85°), siendo la componente de rumbo poco apreciable. El escarpe de falla se encuentra conservado y genera un desnivel máximo en la superficie de 15 metros (Fotografía 4.37), en la que se puede observar a lo largo de la traza, facetas triangulares. No hay aparente variación del sistema de drenaje por la actividad de la falla.
Figura 4.18 Las líneas rojas representan los segmentos de fallas más recientes, mientras que las flechas negras con contornos naranjas muestran el escarpe Plio-cuaternario. Al sureste de la figura la laguna Pomacanchi.
Figura 4.19 Segmento norte de la falla Zangarrará mostrando escarpe principal rectilíneo y estructuras secundarias formando estructuras tipo Echelón.

Fotografía 4.34 Falla Zangarrará mostrando sus facetas triangulares de 120 metros de altura y afectando depósitos aluviales posiblemente relacionados con el último interglacial. Vista tomada hacia el sur.
Fotografía 4.35 Segmento de la falla Zangarará afectando morrenas y desplazándolas 3 metros verticalmente. Vista tomada hacia el norte.

Figura 4.20 Imagen satelital que muestra el segmento mayor cuaternario de la falla Zangarará, muestra un escarpe de 20 metros de altitud.
Fotografía 4.36 Segmento principal activo de la falla Zangarará afectando morrenas y depósitos aluviales y desplazándolas 10 metros verticalmente. Vista tomada hacia el norte, asimismo se pueden ver facetas triangulares. Vista tomada hacia el noreste.

Fotografía 4.37 Segmento norte de la falla Langui-Layo. Se puede observar la buena conservación del escarpe de falla, que se encuentra afectando depósitos cuaternarios. La dirección de este segmento es aproximadamente este-oeste. Foto tomada hacia el norte.
El segmento central tiene 20 kilómetros de longitud, no es un trazo continuo, y se pueden observar trazos paralelos entre sí. El segmento norte y central de la falla Langui-Layo se conectan formando una geometría cóncava (Fotografía 4.38). A partir de ahí, este segmento presenta una dirección noroeste-sureste con buzamiento principal hacia el suroeste. Se observaron hasta tres tipos de movimientos en estos escarpes, sinestral normal, normal y normal sinestral.

Fotografía 4.38 Escarpe de falla semi-circular, debido a la conexión entre los segmentos norte y central de la falla Langui-Layo; se observa que la falla afecta morrenas y depósitos lacustres.

Lateralmente, este segmento se emplaza a lo largo de 1 a 1.5 kilómetros, en esta variación se puede observar que el trazo más oriental es el límite o contacto entre rocas de basamento con depósitos cuaternarios. A lo largo de este contacto se pueden observar escarpes que afectan depósitos aluviales y glaciares, que por su conservación se le asignó una actividad tectónica cuaternaria, otro criterio para considerar la actividad cuaternaria de estos trazos es que afectan morrenas más desarrolladas que podrían estar relacionadas con el último interglaciar o anterior a ella.

Los trazos occidentales presentan escarpes mejor conservados a lo largo de 15 kilómetros de longitud, estas fallas afectan depósitos aluviales, morrenas holocenas y depósitos lacustres heredados de la última glaciación. Un ejemplo claro es la modificación de la laguna Pushnococha y otra (laguna sin nombre), ubicada a 1 kilómetro al norte de la primera; en esta última, se puede observar que la reactivación de la falla divide la laguna en dos partes (Fotografía 4.39). Asimismo, en la parte central se observan morrenas morfológicamente bien conservadas, afectadas o deformadas por la falla con movimientos de tipo normal. Se realizó un análisis de microtectónica en dichos escarpes sugiriendo movimientos de tipo normal sinestral.

El segmento sur se extiende desde la localidad de Langui hasta la localidad de Santa Rosa, a lo largo de 22 kilómetros aproximadamente. Se observa también que lateralmente se prolonga entre distancias que varían entre 1 y 2 kilómetros. La dirección preferente es de N 120° E y buzamiento principal hacia el sur, aunque existen trazos con movimientos antitéticos.

A diferencia del segmento central, los escarpes mejor conservados y con mayores evidencias de actividad tectónica cuaternaria y holocena, se ubican en el contacto de las rocas de basamento con los depósitos cuaternarios (escarpes orientales). Es aquí que un escarpe bien conservado de 18 metros de altitud afecta depósitos aluviales y lacustres de la laguna Sacracocha (Fotografía 4.40). En este se realizaron análisis microtectónicos encontrando un movimiento inverso antecesor (Plio-cuaternario) a los movimientos de tipo sinestral y normal. El movimiento más reciente fue acompañado por reactivaciones antitéticas con rupturas en superficie de 1 metro, las cuales se encuentran conservadas.

Asimismo, frente a la localidad de Langui se observa que la falla afecta morrenas laterales con movimientos normales con componente sinestral (Figura 4.21). Son evidentes los desplazamientos y deformaciones de las morrenas, así como las facetas triangulares (Fotografía 4.41).

En la margen oeste de la laguna Langui Layo, se observan escarpes paralelos a los descritos en la margen este. Los escarpes muestran evidencias de erosión, pero se puede observar que afectan depósitos aluviales. A partir de las observaciones cinemáticas y geométricas, se concluye que este sector, durante el Cuaternario hasta la actualidad, está asociado a un estilo de deformación transtensivo, relacionado a un estilo de deformación tipo pull-apart.

No existen registros de sismicidad en este sector, pero según comunicación con pobladores del lugar indican sentir constantemente sismos al igual que sus antepasados. La falla Langui Layo se debe tener en cuenta para realizar estudios de paleosismología.
Fotografía 4.39 Segmento activo de la falla Languí-Layo. La laguna es dividida en dos partes por la actividad de la falla. Vista hacia el este.

Fotografía 4.40 Escarpe de tipo normal adyacente a la falla Layo.
Figura 4.21 Morrenas en la zona de Langui-Layo deformadas por la actividad de la falla Langui Layo.
Sistema de fallas Chinchaipujio-Paruro-Acomayo (SFCPA)

Se desarrolla en una longitud aproximada de 75 kilómetros. Hacia el sur se puede reconocer este sistema por la localidad de Acomayo, en donde presenta una dirección promedio de N 120° E, siendo subparalela al sistema de falla Casacunca-Acomayo-Langui-Layo. La parte central presenta una deflexión similar a la falla Zurite-Huarocondo, en donde adopta una dirección aproximada este-oeste. Mientras que la prolongación norte vuelve a tener dirección andina.

A lo largo de este sistema de fallas, que es una reactivación o reactivaciones de una estructura antigua, se observan fallas que cortan depósitos aluviales, coluviales y fluvio-glaciares, mostrando así su actividad a lo largo del Cuaternario.

Por consiguiente, se pone en evidencia por primera vez la actividad tectónica de este sistema de fallas. A continuación, se describen las fallas cuaternarias y activas teniendo en cuenta su morfología, cinemática y geometría.

a) **Falla Chinchaipujio**

Se trata de una estructura con dirección noroeste-sureste y paralela al río Apurímac, su prolongación sur vira al igual que el río con tendencia este-oeste con dirección hacia la localidad de Pacaritambo. No se observa un escarpe continuo de la falla, a excepción en Chinchaipujio y Queñaparo, ya que las laderas de los cerros muestran gran cantidad de movimientos de masa, lo que determina la no conservación del escarpe de falla.

Al este de las localidades de Chinchaipujio y Queñaparo se pueden ver escarpes de fallas afectando y deformando depósitos aluviales y las terrazas aluviales de ríos afluentes al río Apurímac. Los escarpes de fallas se encuentran alineados con facetas triangulares con altitudes que varían entre 45 y 100 metros de altitud (Figura 4.22). Asimismo, modifica el sistema de drenaje con movimientos de rumbo de tipo sinestral.

De acuerdo a la morfología de conservación de los escarpes, se deduce que se trata de escarpes pleistocenos, aunque es relativo, ya que las condiciones climáticas en estos sectores son extremas.

Sin embargo, el IGP reportó en marzo del 2000 y noviembre del 2001 dos sismos superficiales de 3.4 y 3.6 de magnitud, respectivamente. Estos sismos podrían estar relacionados a la falla Chinchaipujio.
b) Falla Pacaritambo

Se extiende con dirección aproximada este-oeste desde el poblado de Cusimarca hasta el norte del poblado de Pacaritambo, a lo largo de 20 kilómetros. Gran parte del trazo de falla se ubica en la ladera de los cerros Saucararo y Yanapinta, donde se pueden observar junto al trazo facetas triangulares que afectan y modifican depósitos posiblemente cuaternarios. De la misma forma, a lo largo de este sector se pueden evidenciar grandes movimientos en masa y erosión de las laderas.

En el segmento que se encuentra en la margen izquierda del río Ccorca, se observan escarpes de fallas que afectan y controlan depósitos aluviales y el sistema de drenaje de la zona. Los escarpes tienen una altitud de 20 metros y por su estado de conservación morfológica se le puede atribuir una edad pleistocena.

c) Falla Paruro

Se extiende con dirección N 150° E y buzamiento de 65°-70° hacia el oeste a lo largo de 11 kilómetros, entre los poblados de Yaurisque y Paruro. La deformación de esta falla se distribuye mediante un escarpe principal que generó un desplazamiento máximo vertical de 25 metros; solo en la parte norte la falla se divide en 4 escarpes, generando según su distribución una estructura en echelón o cola de caballo (Figura 4.23).

La falla se ubica a 3.5 kilómetros al oeste del poblado de Paruro y a 25 kilómetros en la misma dirección de la ciudad del Cusco. La falla pone en contacto areniscas feldespiáticas y lutitas de coloración rojiza de la formación Puquín con depósitos aluviales y fluviales (Fotografía 4.42); asimismo, se observan a lo largo de la traza facetas triangulares bien conservadas de 10 metros de altitud.

En la cabecera del río Naiquehuayjo, dos terrazas aluviales, ubicadas al oeste del poblado de Paruro, muestran que la estructura interna de las gravas, fueron modificadas y deformadas con movimientos relacionados a compresión, es decir reactivaciones de la falla con movimientos de tipo inverso. Estos movimientos podrían estar relacionados con el evento compresivo, reportado por Cabrera (1988), durante el Pleistoceno inferior en la cuenca del Cusco.

Al este de los cerros Yotocjasa y Condorsenca se observa que los depósitos aluviales se encuentran desplazados con movimientos de tipo normal y con saltos de hasta 1 metro, estos movimientos están asociados a la actividad tectónica cuaternaria de la falla. La traza de falla en este sector es rectilínea. Finalmente, la proyección norte de la falla muestra en los sectores de Patacancha y Pampa Huaylla una distribución en tipo echelón, donde el trazo principal presenta una dirección N 150° E y los secundarios presentan direcciones aproximadamente de este-oeste, generándose así una deflexión en la estructura. Los escarpes secundarios se encuentran morfológicamente bien conservados y originaron desniveles en la superficie que varían entre 0.7 metros y 1 metro (Figura 4.23). Por consiguiente, se propone que estas
Figura 4.23 Segmento norte de la falla Paruro donde se muestra la distribución de la deformación en estructura tipo cola de caballo o echelón. (Ver flechas).

Fotografía 4.42 Vista panorámica de un segmento de la falla Paruro en donde se puede observar el desnivel generado en la superficie producto de la actividad tectónica. La traza pone en contacto areniscas y lutitas de coloración rojiza con depósitos aluviales y coluviales de edad cuaternaria.
rupturas superficiales de hasta 1 metro se encuentran relacionadas con la actividad más reciente de la estructura, rupturas que se dieron con movimientos de tipo normal con componente de rumbo sinestral, según el análisis microtectónico.

Cabrera (1988) reporta en base a registros históricos que poblados como Paruro, Yaurisque, Rondocan, entre otros, fueron afectados grandemente o destruidos en su totalidad por sismos. Los catálogos sísmicos del IGP y de la USGS reportan sismos superficiales en los últimos años; por ejemplo, el año 2003 dos eventos de 4.8 y 5 grados de magnitud (MI) en el mes de agosto, y el año 2006 un sismo de 4.3 de magnitud (MI) en el mes de setiembre.

d) Falla Acomayo

Se extiende a lo largo de 30 kilómetros con una dirección preferencial noroeste-sureste, desde la confluencia de los ríos Apurímac y Paruro hasta el sur del poblado de Acomayo. En general limita rocas cretácicas, cenozoicas e intrusivas con depósitos cuaternarios, mientras que en las partes más altas afecta depósitos fluvio-glaciares.

En la parte norte y central se pueden diferenciar claramente dos segmentos paralelos, separados por una distancia de 2.8 kilómetros, para luego agruparse en el cerro Jatun Orjo. Para una mejor descripción se llamarán a estos segmentos: segmento occidental y segmento oriental.

El segmento occidental se puede observar en la ladera norte del cerro Huayruro, margen izquierda del río Apurímac, con dirección N 130° E y 67° de inclinación hacia el oeste, esta parte de la falla pone en contacto intrusivos oligocenos con cobertura cuaternaria, y por la conservación del escarpe de falla se le puede asignar a este segmento una edad pleistocena. La prolongación de esta estructura se puede observar en la margen derecha del río Apurímac, en el cerro Moca Yocoj, frente al poblado de Colcha, es aquí donde se observan tres escarpes de falla con dirección N 130° E, haciendo aflorar y limitando rocas de la formación Kayra con depósitos aluviales; el escarpe principal se proyecta hasta el cerro Jatun Orjo, cruzando depósitos aluviales de la quebrada Sanka, lugar donde se ubica el poblado de Santo Domingo de Sanka y un mega deslizamiento ubicado en el flanco sur del cerro Jatun Orjo. El análisis microtóctonico nos permitió identificar dos movimientos, el primero de tipo normal y el segundo de tipo normal con componente sinestral. Asimismo, se pueden observar a lo largo de la traza de falla facetas triangulares de hasta 300 metros de altitud (Fotografía 4.43).

Fotografía 4.43 Faceta triangular asociada a la falla Acomayo. Se puede observar al pie del escarpe de falla una serie de depósitos coluviales producto de las reactivaciones de la falla.
El segmento oriental se observa en el cerro Portamiyoc, la traza de falla y facetas triangulares se extienden por las crestas de los cerros Pircco Orjo, Moca Yocoj y Jatun Orjo con dirección N 120° E y buzamiento de 75° al suroeste. Es en el cerro Jatun Orjo que los segmentos occidentales y orientales convergen, formando un sistema de falla más continua y activo. Por consiguiente, en el cerro Jatun Orjo se observan tres escarpes de falla que cruzan depósitos coluviales, aluviales y los depósitos del deslizamiento de la ladera suroeste del cerro Jatun Orjo (Figura 4.24). El análisis georomfológico y geodinámico del sector nos sugiere que el origen del proceso de movimiento en masa tiene relación con la actividad tectónica de la falla.

Este sistema se prolonga hasta el sureste del poblado de Acomayo, mediante escarpes continuos de hasta 100 metros de altitud (Fotografía 4.44), a lo largo de la traza se observaron que los depósitos aluviales y fluviales se encuentran deformados con movimientos de tipo normal. Por su cercanía a la localidad de Acomayo (700 metros) constituye un peligro ante una posible reactivación.

Asimismo, se observaron a lo largo de la traza, facetas triangulares con altitudes que varían entre 5 y 20 metros (Fotografía 4.45). Al pie de estas, en el escarpe de falla bien conservado se observan modificaciones en los depósitos coluviales y modificando el sistema de drenaje.

A lo largo del plano de falla se observaron hasta cuatro movimientos diferentes de la falla, el más antiguo de tipo inverso y los tres restantes de tipo normal con componente sinestral (Figura 4.25).

La reactivación más reciente de la falla Paruro se ubica al sur de Acomayo, en el sector de Campanayoc a 4150 m. s. n. m., esta estructura de dirección N 120° E presenta un escarpe de 10 metros bien conservado y se extiende a lo largo de 5 kilómetros (Fotografía 4.46). El análisis morfológico y microtectónico nos permitió determinar dos tipos de movimientos, el primero de tipo normal y último movimiento de tipo inverso. Asimismo, se pueden observar depósitos coluviales al pie del escarpe a lo largo de todo el trazo de falla.

Los catálogos sísmicos del IGP y de la USGS reportan sismos superficiales en los últimos años, por ejemplo en agosto del 2003, julio del 2005, noviembre del 2006 y mayo del 2005; siendo el de mayor magnitud el evento del 2006 con 4.7 grados de magnitud (Ml).
Figura 4.24 Escarpes de falla de Acomayo afectando depósitos aluviales y del deslizamiento ubicados en el Cerro Jatun Orjo.
Fotografía 4.45 Facetas triangulares asociadas a la falla Acomayo. Al pie de estas facetas se observan fallas afectando cobertura cuaternaria.

Figura 4.25 Contacto fallado entre conglomerados Mio-pliocenos con depósitos aluviales y coluviales. A) Depósitos coluviales flexurados por el movimiento de tipo inverso de la falla Paruro. B) Interpretación de la figura A detallando la cinemática y el alineamiento de los clastos. C) Plano de falla donde se muestra el contacto de los conglomerados del Mio-plioceno con depósitos coluviales. D) Estrías identificadas en el plano de falla.
Falla Ccorca
Se ubica a 15 kilómetros al oeste de la ciudad del Cusco. Tiene una dirección preferencial este-oeste y buzamientos que varían entre 80° y 67° hacia el sur. Se trata de una estructura antigua con evidencias de reactivaciones con ruptura superficial durante el Cuaternario, la falla limita y pone en contacto rocas volcánicas cenozoicas con depósitos fluvio-glaciares y aluviales.

Se emplazan a 4200 m. s. n. m., en donde se pueden distinguir tres escarpes principales (Figura 4.26), el escarpe de mayor longitud tiene 8 kilómetros y afecta mayormente depósitos lacustres, palustres y fluvio-glaciares.

El escarpe mejor conservado tiene 2.5 metros de altitud, en él se pudieron identificar estrías en el escarpe central; el análisis microtectónico sugiere un movimiento de rumbo de tipo dextral y otro previo de tipo normal con componente de rumbo de tipo dextral (Fotografía 4.47).

No existen registros de sismos según los catálogos del IGP y USGS, pero los pobladores de la localidad de Ccorca, que se ubica a 3 kilómetros de la falla, cuentan que sus antepasados sufrieron cuantiosos daños por efecto de sismos y consecuentes caídas de rocas y deslizamientos. Por el análisis morfológico, las morrenas afectadas y la buena conservación de los escarpes de falla determinamos que esta estructura es una falla activa.

Falla San Lorenzo
Fue denominada de esta manera debido a que el segmento activo se ubica adyacente al poblado de San Lorenzo y cruzando los cerros Huarcoyoc y Huarangalle. Se emplaza a lo largo de 6 kilómetros con una dirección N 170° E y buzamiento de 70° al oeste (Figura 4.27). Asociados a la actividad de la falla se tienen depósitos palustres y aluviales deformados con movimientos de tipo normal, y la formación de sand-ponds.

Más hacia el sur, adyacente al poblado Accha, y con la misma dirección que la falla San Lorenzo, se identificó un escarpe de 8 kilómetros de longitud. Si bien es cierto el escarpe no se encuentra bien conservado, este deforma depósitos aluviales similares a los ubicados en la localidad de Zangarará. Por consiguiente, estarían relacionados también con el último interglaciar (125 000 años).

No se reportan eventos sísmicos históricos ni instrumentales en este sector, pero, por el trazo bien conservado del segmento San Lorenzo, se cree que la falla se reactivó en los últimos 10 000 años, considerándola como activa.
Figura 4.26 Escarpes activos de la falla Ccorca. Se puede observar su orientación este-oeste señalados por las flechas.
Fotografía 4.47 Escarpe de falla y estriás observadas en la cara libre del escarpe central. En la parte superior se observa dos proyecciones estratigráficas con poblaciones de fallas principales y secundarias, la primera sugiere extensión con esfuerzo principal N45°E dando lugar a la reactivación de la falla con movimiento de tipo normal; el esfuerzo principal de la segunda proyección (N60°E) sugiere movimiento de tipo dextral con componente normal. Se puede observar que las estrias de tipo dextral cortan las de tipo normal.

Figura 4.27 Escarpe de falla San Lorenzo, se pueden observar sangpods a lo largo de la traza de falla, producto de su actividad.
Falla Acos

Fue denominada de esta manera por estar ubicada a 2 kilómetros del poblado de Acos. Se caracteriza por presentar dos segmentos: el segmento norte de dirección noroeste-sureste, de una longitud de 11 kilómetros y asociada a lo largo de toda la traza a facetas triangulares y escarpes de falla erosionados, pero estos toman mejor expresión morfológica al pie del cerro Cuncayoj, donde afloran depósitos aluviales semejantes a los estudiados en las áreas de Zangarára y Accha, relacionados posiblemente con el último interglaciar. Las gravas aluviales se encuentran desplazadas con movimientos de tipo normal. Por consiguiente, para el segmento norte, podemos asignar a estos movimientos o reactivaciones edades pleistocenas.

El segmento sur muestra escarpes mejor conservados, que afectan depósitos aluviales y depósitos de un deslizamiento ubicado en la ladera occidental del cerro Marannioj (Fotografía 4.48). Por la conservación determinamos actividad tectónica reciente en esta área. Los escarpes tienen una dirección aproximada de norte-sur (Figura 4.28).

Con el análisis microtectónico de cada uno de los escarpes se identificaron hasta tres movimientos de la falla: el más antiguo de tipo inverso con componente sinestral, seguido por uno de tipo sinestral con componente normal y, finalmente, la reactivación más reciente con ruptura superficial asociada a un movimiento de tipo inverso (Fotografía 4.49). Por la semejanza de los tensores de esfuerzos, este último evento estaría relacionado, y sería contemporáneo, a las reactivaciones jóvenes con ruptura superficial de la falla Amaru.

Falla Collquemarca

Los escarpes de la falla Collquemarca se ubican a 4 kilómetros al oeste del poblado de Acopia, entre la laguna de Acopia y la laguna de Tungasuca. Se caracterizan por estar dispuestos paralelamente con longitudes de 4 kilómetros a lo largo de 15 kilómetros y cortando la ladera occidental del cerro Collquemarca -de ahí su nombre- hasta la laguna Tungasuca.

Fotografía 4.48 Flanco occidental del cerro Marannioj donde se observan dos escarpes de falla cruzando el cuerpo del deslizamiento y proyectándose hasta la corona de este.
Figura 4.28 Detalle de los escarpes de falla en el cerro Marannio. Imagen de Google Earth.

Fotografía 4.49 Terraza aluvial afectada por el movimiento de la falla de tipo inverso.
Los escarpes tienen una dirección N 140° E y buzamiento hacia el suroeste (Figura 4.29). Los escarpes se encuentran dispuestos en rocas intrusivas cenozoicas y cretácicas, en la proyección de estos escarpes hacia los valles se pueden observar terrazas aluviales deformadas con movimientos de tipo normal; asimismo, utilizando las imágenes satelitales podemos observar que el sistema de drenaje se encuentra modificado, acomodándose a movimientos de la falla de tipo sinestral.

La altitud de los escarpes varía entre 20 y 5 metros de altitud, dejando en evidencia que existe una acumulación de reactivaciones con ruptura superficial durante el Cuaternario. Podemos afirmar que esta estructura se encuentra actualmente activa, ya que se tiene registro histórico de un sismo en julio de 1950 e instrumental en febrero del 1972, donde la USGS reporta un sismo superficial de 4.8 grados de magnitud.

Figura 4.29 Escarpes paralelos de la falla Collquemarca. Imagen de Google Earth.

Falla San Juan

Se emplaza a lo largo de 20 kilómetros y se caracteriza por hacer una deflexión que sigue la dirección del río Apurímac en este sector. El sector norte tiene una dirección este-oeste, mientras que el sector sur presenta una tendencia noroeste-sureste. Coincide con el límite entre el dominio de la cordillera Occidental el Altiplano occidental.

Hacia el poblado de Santa Lucía, se observa el escarpe mejor conservado, de 6 metros de altitud (Figura 4.30), donde los depósitos aluviales de la quebrada Chullo se encuentran desplazados con movimiento normal.

El trazo no es continuo en la margen derecha del río Apurímac, ya que fueron erosionados o removilizados por procesos de movimientos en masa, pero hacia el sector de Totora se observan facetas triangulares alineadas al trazo de la falla.

Asimismo, en las alturas de la laguna Cochapata se pudieron observar grietas adyacentes a la falla y con la misma dirección, de esta forma reactivando un deslizamiento en la margen izquierda del río.

La información sobre sismicidad en este sector es escasa, no existen registros históricos ni instrumentales, esto nos limita a determinar la actividad de la falla, pero por morfología se podría deducir que la falla San Juan tiene historia de reactivaciones por lo menos pleistocenas.

Falla Huayllate Rani

Se ubica a 12 kilómetros al este de la localidad de Héctor Tejada, de la provincia de Espinar. Se caracteriza por estar conformada por escarpes de fallas paralelos entre sí, y que se extienden a lo largo de 15 kilómetros con una dirección aproximada de norte-sur. A lo largo de los escarpes de falla se puede observar un alineamiento de lagunas producto de la distribución de los escarpes de falla.
Se pudieron identificar dos movimientos mediante el análisis de microtectónica: uno de tipo inverso seguido por otro de tipo normal, esta última reactivación dio lugar a la formación de fallas normales con buzamientos opuestos, formando así grabens que luego sirvieron para la creación de lagunas (Figura 4.31).

No existen registros históricos de sismicidad; por consiguiente, por los materiales afectados (morrenas) y la morfología de los escarpes, postulamos que esta falla tuvo actividad durante el Pleistoceno.

Figura 4.30 Las flechas de color rojo muestran escarpes de la falla San Juan. Imagen de Google Earth.

Figura 4.31 Escarpes de la falla paralelos que dieron origen a la formación de la laguna de Lacacota.
Falla Capacmarca

La última reactivación de la falla Capacmarca fue el 8 de agosto del 2003. Según los registros del IGP, los sismos fueron de 4.6 y 4.5 en la escala de Richter y tuvieron una profundidad de 10 kilómetros. Asimismo, reportan que en el lapso de un mes se tuvieron aproximadamente 56 réplicas con magnitudes menores a 4 grados (MI).

Esta crisis sísmica se encuentra relacionada con pequeñas trazas de dirección este-oeste y buzamiento hacia el sur, la cinemática es de tipo normal. A lo largo de la traza de falla se observan escarpes de 5 metros de altitud afectando morrenas y depósitos aluviales cuaternarios.

Falla Ccapi

Se extiende a lo largo de 11 kilómetros entre las localidades de Ccapi y Joyabamba, provincia de Paruro. Los escarpes más conservados se encuentran adyacentes a la población de Ccapi, de ahí su nombre.

Falla Laravito, ubicada a 21 kilómetros al noreste del poblado de Espinar, se caracteriza por presentar una dirección N 125° E y buzamiento preferencial hacia el suroeste. La traza de falla cruza depósitos aluviales y morrenas desplazándolos con movimientos de rumbo de tipo sinestral (Figura 4.32). Es así que cuando se realiza el análisis de la cinemática, se determinaron movimientos de tipo normal con componente sinestral. No existe registro de actividad sísmica en esta parte de la región, pero por la conservación del escarpe de falla y por los materiales que son afectados podemos atribuirle a esta falla una edad Pleistoceno superior.

Fallas de la zona de Espinar

De esta manera se llaman a las estructuras cuaternarias y activas ubicadas en la cordillera Occidental, específicamente al sur de la provincia de Espinar.

La falla Laravito, ubicada a 21 kilómetros al noreste del poblado de Espinar, se caracteriza por presentar una dirección N 125° E y buzamiento preferencial hacia el suroeste. La traza de falla cruza depósitos aluviales y morrenas desplazándolos con movimientos de rumbo de tipo sinestral (Figura 4.32). Es así que cuando se realiza el análisis de la cinemática, se determinaron movimientos de tipo normal con componente sinestral. No existe registro de actividad sísmica en esta parte de la región, pero por la conservación del escarpe de falla y por los materiales que son afectados podemos atribuirle a esta falla una edad Pleistoceno superior.
La falla Huaytacucho-Condoroma, tiene una dirección N 120° E y una inclinación de 75° hacia el noroeste. Es una estructura antigua que afecta depósitos volcánicos miocenos continuando su actividad durante el Cuaternario y la actualidad. No existe un escarpe de falla continuo, este al parecer fue erosionado por la actividad glacial. Por la disposición de los estratos y análisis del sistema de drenaje se puede afirmar que se trata de una falla normal con componente de rumbo sinestral; asimismo, la disposición de la sismicidad superficial de los últimos años nos grafica claramente el movimiento de la falla y el plano de ella a profundidad.

La falla Coporaque, se ubica a 25 kilómetros al suroeste del poblado de Espinar, tiene la misma dirección que la falla Huaytacucho-Condoroma, no se observa escarpe de falla, posiblemente erosionado o es evidencia de que no hubo sismos con ruptura superficial aparente. Esto nos restringe la descripción de la estructura, pero los catálogos sísmicos de la USGS e IGP indican sismos superficiales en los años de 1994, 1998, 1999, 2003 y 2010.

La falla Santo Tomás se caracteriza por presentar dos escarpes paralelos de dirección N 145° E y con inclinaciones de 70°-75° hacia el suroeste, estos trazos de fallas deforman una superficie compuesta por depósitos volcánicos miocenos a lo largo de 18 kilómetros aproximadamente. El segmento que se ubica a 7.5 kilómetros, con dirección suroeste, deforma también depósitos fluvio-glaciares y aluviales con movimientos de tipo normal. No se observa un escarpe, posiblemente porque fueron erosionados, pero los registros sísmicos del IGP indican sismos superficiales en este sector y adyacentes a los segmentos de fallas, lo que nos da una idea de su actividad.

Sistema de fallas de Ocongate
El trabajo complementa los estudios de Audebaud (1973) y Cabrera (1988) en la región de Ocongate, donde se puso en evidencia la existencia de fallas normales activas con dirección este-oeste, y a lo largo de 20 kilómetros, en el borde norte de la cordillera de Ausangate. El sistema de fallas se encuentra ubicado a lo largo de la cuenca plio-cuaternaria de Ocongate. Esta cuenca de dirección noreste-suroeste se emplaza sobre rocas paleozoicas de la cordillera Oriental; rellenada por depósitos fluvioglaciares y morrenas cuaternarias, la cuenca se encuentra afectada por el sistema de fallas Ocongate de dirección aproximadamente este-oeste.

Cabrera (1988) propone dos sectores de fallas: fallas Ausangate y fallas Uchuycruz; a estos dos sectores se le añadieron las fallas de Sigrinacocha, ubicadas al norte de la laguna del mismo nombre, con escarpes que generan desniveles en la superficie, entre 50 (Fotografía 4.50) y 0.40 metros (Fotografía 4.51), y afectando depósitos lacustres, fluvioglaciares y morrenas.

Fotografía 4.50 Escarpe de falla de 50 metros de altitud en el sector de Sigrinacocha.
En las fallas ubicadas al pie de la cordillera de Ausangate (Fotografía 4.52) se distinguen dos grupos de segmentos: fallas con buzamiento hacia el norte, las cuales presentan claras y frescas escarpas con perfiles que alcanzan 35°-40° de pendiente; y fallas con buzamiento hacia el sur, cuyos perfiles de las escarpas se encuentran más evolucionadas o degradadas con ángulos promedios inferiores a 27°, estas trazas se pueden distinguir en las fotografías aéreas. Los análisis en los planos de fallas sugieren una dirección de este-oeste y buzamientos que varían entre 70° y 75° hacia el sur.

Las fallas ubicadas en el sector de Uchuycruz se ubican a 5 kilómetros al noreste de las fallas Ausangate; la dirección preferencial señala este-oeste y un buzamiento de 75° hacia el sur.

Cabrera (1988) caracteriza las fallas de la siguiente manera: Las actividades holocena y pleistocena de las fallas Ocongate pueden ser deducidas a partir de los depósitos afectados y de los análisis morfológicos de escarpes: los escarpes formados por fallamiento holoceno, los cuales están asociados a los planos con buzamiento hacia el norte, y los escarpes por fallamiento pre holoceno asociados a planos con buzamiento hacia el sur.

Asimismo, según las dataciones realizadas por Mercer & Palacios (1977), las morrenas afectadas con buzamiento hacia el norte tendrían 14 000 años (Fotografía 4.53), lo que hace que se les considere como activas. Los análisis morfológicos del perfil de los escarpes dan argumentos a favor de una edad Holocena. Los escarpes más antiguos tendrán menor ángulo con respecto al original.

En la cuenca de Ocongate se observa la escarpa de falla cuaternaria más antigua de 1 kilómetro, dicha escarpa con más de 60 metros de altura se encuentra asociada a una falla mayor con buzamiento hacia el norte, los cuales afectan depósitos pleistocenos sin afectar los más recientes. Hacia el este, dicha escarpa no se observa claramente, esto parece ser debido a una fuerte erosión asociada a la actividad glaciar y fluvio-glaciar. Por consiguiente, el fallamiento con buzamiento hacia el norte parece constituir el sistema mayor y el más antiguo. De esta forma, las escarpas holocenas, o parte de estas, están asociadas a recientes reactivaciones de fallas cuaternarias preexistentes. Por otra parte, las fallas con buzamiento hacia el sur, formadas en el Pleistoceno, constituirán fallas antitéticas con respecto al fallamiento mayor. Un cambio brusco de pendiente en la escarpa está asociado a una reactivación de la falla. En las escarpas pre holocenas se distinguen más de dos reactivaciones, en otros sectores se reconocen 5 reactivaciones si se considera un promedio de 2 metros de desplazamiento por evento. Las escarpas holocenas muestran solo 2 reactivaciones de fallas.
Fotografía 4.52 Escarpe de falla del sector Ausangate, al fondo se puede apreciar la cordillera de Ausangate.

Fotografía 4.53 Escarpe de falla del sector Ausangate, afectando morrenas de 14 000 años (Mercer & Palacios, 1977).
Finalmente, también se identificaron escarpes de fallas en la margen derecha de la laguna Sibinacocha, estas estructuras tienen 15 kilómetros de longitud y tienen una dirección N 135° E y se encuentran afectando morrenas, depósitos fluvio-glaciares y palustres. La máxima altitud del escarpe es de 12 metros (Fotografía 4.54). Con el análisis del sistema de drenaje por imágenes aéreas se observó que las fallas de este sector tienen componente de rumbo de tipo sinestral. Asimismo, los trazos de fallas del sector de Sigrinacocha cortan superficies datadas en 4150 B.P. mediante el método de radiocarbono (Buffen et al. 2009), poniendo en evidencia la actividad holocena de este segmento de falla.

Fotografía 4.54 Escarpe de falla afectando morrenas en el sector de Ocongate.

Falla Ccatcca

Tiene una longitud de 15 kilómetros y aparentemente es una prolongación de las fallas observadas al sur de Ocongate, donde las estructuras presentan una dirección noroeste-sureste. Limita la cuenca Plio-cuaternaria de Ccatcca, descrita anteriormente por Cabrera (1988), como una depresión alongada rellena por sedimentos lacustres y fluviales cuaternarios dispuestos sobre rocas paleozoicas. La base de los depósitos cuaternarios presenta discordancia angular respecto a las rocas de basamento. Por litología y disposición se asemeja o se puede correlacionar con la formación San Sebastián de la cuenca cuaternaria del Cusco. Por la conservación de los escarpes se le puede asignar una edad Pleistocena inferior.

Sistema de fallas del río Vilcanota

Cabrera (1988) define como sistema de fallas Vilcanota a las estructuras que se ubican entre Urcos y Sicuani. Nosotros proponemos una redefinición, ya que las anteriores estructuras mencionadas fueron descritas en el sistema de fallas regional Zurite-Cusco-Sicuani. En el presente trabajo se ponen en evidencia fallas cuaternarias ubicadas en la parte alta de la margen derecha del río Vilcanota, que a continuación se describen:

a) **Falla Colquepata**

Es la reactivación de una falla antigua y se extiende a lo largo de 8 kilómetros donde el escarpe mayor mide 15 metros y el menor 1 metro. Esta diferencia de escarpes nos indica que esta falla se reactiva generando rupturas en la superficie de 1 metro como mínimo, y que existe una acumulación de eventos sísmicos en el caso del escarpe de 15 metros (Fotografía 4.55).

La falla tiene una dirección preferencial de N 140° E con una inclinación de 68° hacia el este, aunque también se identificaron
pequeños segmentos de fallas con buzamientos contrarios y que afectan mayormente depósitos fluvio-glaciares con movimientos de tipo normal, aunque se pudieron identificar movimientos de tipo sínestrales normales anteriores.

La última reactivación de la falla Colquepata desplaza a una morrena, 1 metro verticalmente, con movimiento de tipo normal. El escarpe se encuentra conservado sugiriendo una edad Pleistocena superior a Holocena (Fotografía 4.56).

Finalmente, si bien es cierto no existen reportes de sismos en este sector, por comunicación con la población, las personas del lugar afirman haber sentido movimientos del terreno continuos en los últimos 20 años.
b) Falla Chahuaytire

Se ubica adyacente al poblado de Chahuaytire y de manera paralela a la falla Colquepata, es una estructura que se extiende con dirección N 120° E a lo largo de 12 kilómetros. Cruza morrenas y depósitos fluvioglaciares (Fotografía 4.57) de los cerros Jespe Orjo, Abrancuyo y Jalpillo.

Los escarpes tienen 5 metros de altitud y a lo largo de su traza se pueden observar facetas triangulares, charcas alineadas y lagunas, como el caso de la laguna Yanacocha. El análisis del sistema de drenaje sugiere desplazamientos de tipo sinestral de los cursos de ríos y de las morrenas (Figura 4.33).

El IGP reporta un sismo superficial de magnitud 3.9 (Ml) y adyacente a la falla. Podría tratarse de una reactivación de la estructura.
c) Falla Cuyo Chico

Se ubica en las alturas del poblado de Pisaq, exactamente frente al resto arqueológico de Pisaq. Se trata de una falla dextral con componente normal que afecta depósitos coluviales y fluvio-glaciares de edad pleistocena.

Tiene un escarpe de 8 metros (Fotografía 4.58), en donde se pudo reconocer el último movimiento de tipo dextral normal. La dirección preferencial es de N 165° E y buzamiento hacia el oeste. A lo largo de la traza de falla, 8 kilómetros, se pudieron observar deslizamientos y caídas de rocas que estarían asociados a la actividad de esta estructura.

En la prolongación este de la estructura se observan pequeños escarpes generando saltos de 1.5 metros y afectando depósitos fluvio-glaciares, esta geometría está relacionada a un estilo de deformación de tipo cola de caballo o echelon.

Es necesario mencionar que, al pie del deslizamiento, existe la presencia de un deslizamiento-fluo activo que pone en peligro las viviendas de los poblados de Cuyo, Cotataque y Tío. Este tema se tratará en los capítulos V y VII.

![Fotografía 4.58 Escarpe de falla de Cuyo Chico, vista tomada hacia el noreste.](image)

d) Falla Lamay

Se ubica en las alturas del poblado de Lamay, a 7 kilómetros hacia el noreste aproximadamente. Se caracteriza por ser un escarpe continuo que se extiende a lo largo de 7 kilómetros cruzando principalmente las laderas occidentales de los cerros Suracocha, Juyayoc, Marcasune y la quebrada Carmen.

Tiene una dirección N 130° E y buzamiento de 70° hacia el suroeste, el escarpe mejor conservado se ubica en el cerro Marcasune teniendo una altitud de 10 metros y desplazando depósitos coluviales, lacustres y aluviales de la quebrada Isillo (Figura 4.34) con movimiento de tipo normal.

En el cerro Juyayoc, el escarpe de falla es mayor, tiene aproximadamente 30 metros y se observan cambios de pendiente en la cara libre o faz libre, sugiriendo estar relacionados a una acumulación de reactivaciones. No se pudieron encontrar estrías, ya que posiblemente fueron erosionadas por actividad climática o acción glaciar.

La falla Lamay constituye la parte central del sistema del río Vilcanota, siendo la prolongación sur la falla Colquepata y Cuyo Chico, y la proyección norte la falla Machacancha.
e) Falla Machacancha

Es la continuación norte de la falla Lamay, se extiende a lo largo de 8 kilómetros con dirección N 140° E y buzamiento hacia el suroeste. Cruza los cerros Jatunpunta, Apurinru y Cóndorhuachana, así como también las quebradas Ccochoc y Qorpahuayqo.

El escarpe que cruza el cerro Jatunpunta, y constituye la continuación de la falla Lamay, presenta un escarpe de 15 metros con abruptos cambios en la pendiente, esta morfología nos indicaría una actividad Plio-cuaternaria. Su trazo se proyecta hacia la quebrada Ccochoc, coincidiendo o dando origen a la surgencia de aguas termales de Machacancha.

El escarpe ubicado en los cerros Apurinru y Cóndorhuachana tiene apariencia más fresca, es así que cuando se proyecta el trazo en la quebrada Qorpahuayqo (Fotografía 4.59), se puede evidenciar claramente cómo corta un valle glaciar reciente (Figura 4.35) y las morrenas que llegan provenientes de la parte nororiental. Por consiguiente, es una falla activa y tienen directa relación con los flujos de detritos y los depósitos aluviales que afloran en la localidad de Calca.
f) Falla Lares

Se ubica en las alturas de la localidad de Lares, provincia de Calca. Está constituida por segmentos de longitudes de 300 y 600 metros que se disponen con dirección noroeste-sureste y buzamiento preferencial hacia el suroeste. El área aproximada en el cual se emplazan estas estructuras es de 435 km².

Las trazas de fallas afectan principalmente depósitos aluviales y fluvio-glaciares que se encuentran dispuestos sobre rocas paleozoicas, constituyéndose así en reactivaciones de estructuras antiguas y regionales.

Estas fallas, con aparente ruptura superficial, tienen relación con la fuente termal de Lares, ya que por ser una zona de debilidad de la corteza las aguas profundas pueden emerger rápidamente conservando temperaturas altas (Figura 4.36).
Fallas de la cordillera Oriental

Bajo este nombre se ponen en evidencia fallas activas y cuaternarias ubicadas en la parte alta de la cordillera Oriental. Se pueden distinguir dos sistemas de fallas con direcciones preferenciales a la deflexión de la cadena andina, así tenemos: a) sistema de fallas río Mapacho-Paucartambo con direcciones noroeste-sureste, se ubican en ambas márgenes del río Mapacho y se extiende a lo largo de 130 kilómetros y b) sistema de fallas Ollantaytambo-Vilcabamba-Kimbiri con direcciones este-oeste y que se extienden a lo largo de 110 kilómetros desde el norte de Ollantaytambo hasta el río Apurímac (localidades de Bellavista, Kimbiri, entre otras). La identificación de estas fallas fue en base al análisis de fotografías aéreas, imágenes satelitales y trabajos de campo.

a) Sistema de fallas río Mapacho-Paucartambo

Se trata de escarpes de fallas que se extienden a lo largo de aproximadamente 130 kilómetros en ambas márgenes del río Mapacho con una dirección noroeste-sureste. Por su gran extensión comprende áreas de las provincias de La Convención, Calca y Paucartambo.

Morfoestructuralmente se ubica en la cordillera Oriental donde afloran rocas paleozoicas cubiertas en gran parte por depósitos cuaternarios producto de la actividad glacial. Es así, que a lo largo de este sistema de fallas, aparentemente de geometría subvertical, se observan que las fallas cortan morrenas, depósitos aluviales, lacustres y a su vez coinciden con las coronas de grandes deslizamientos, sugiriendo de esta forma su estrecha relación. A lo largo del sistema se observaron diferentes morfologías de los escarpes, indicando una historia de reactivaciones y consecuente elevada actividad tectónica cuaternaria y holocena.

A continuación describimos por sectores las fallas, está segmentación o división realizamos a partir de criterios morfoestructurales y estratigráficos.

Las fallas de Quellouno se ubican en ambas márgenes del río Mapacho, en la margen derecha se observa un escarpe principal de 18 kilómetros de longitud y escarpes subparalelos de longitudes que varían entre 4 y 7 kilómetros. Todas ellas cruzan las laderas de los cerros Bacacho, Bellavista y Piñamayo y afectan depósitos aluviales de las quebradas Cirialo y Piñamayo con movimiento de tipo normal. Tienen una dirección N 140° E y buzamiento promedio de 70° hacia el sur, la falla principal forma facetas triangulares y genera un desplazamiento máximo vertical de 25 metros (Fotografía 4.60), sugiriendo una acumulación de reactivaciones. Finalmente, los escarpes de fallas no muestran buena conservación producto de la actividad glacial, a partir de ello y por los depósitos que afectan proponemos una última reactivación durante el Pleistoceno medio.

Fotografía 4.60 Facetas triangulares en la ladera del cerro Bellavista producto de la actividad de tipo normal de la falla Quellouno, el desnivel generado es de 35 metros.
En la margen izquierda, se aprecia un escarpe de falla principal de 9 kilómetros y uno secundario de 3 kilómetros, estas son paralelas a las descritas anteriormente y con buzamiento hacia el suroeste. En el cerro Palmanayoc el escarpe de falla tiene mayor altitud, 15 metros, y afecta depósitos aluviales de la quebrada Rosario. Se observan cambios de pendiente en la cara libre o faz libre, sugiriendo acumulación de reactivaciones.

Sector de fallas Televan-Otocani-Yuracmayo se ubica en el límite de las provincias de Calca y Paucartambo. Constituye la parte central del sistema de fallas río Mapacho-Paucartambo, a lo largo de este sector ponemos en evidencia actividad tectónica reciente con una dirección preferencial N 150° E y buzamiento preferencial de 75° hacia el suroeste, aunque también identificamos fallas normales con buzamiento opuesto formando grabens. Este sector de fallas se ubica en la margen derecha del río Mapacho, a lo largo de 20 kilómetros, en las laderas de los cerros Televan, Otocani, Solan, Jesús María y San José de Sahuay a 3600 m.s.n.m.

En el cerro Televan, se identificaron dos escarpes de fallas, cada uno de 5 y 3 metros afectando morrenas y depósitos lacustres con movimientos de tipo normal (Fotografía 4.61). El escarpe de 5 metros de altitud presenta variaciones en la pendiente de la cara o faz libre del escarpe, sugiriendo acumulación de eventos sísmicos (Fotografía 4.62). Asimismo, adyacente a la fallas principal se observaron escarpes secundarios con direcciones promedios a N 60° E, estos generaron desniveles en la superficie de 0.40 metros. Éstas estructuras son las proyección de las fallas Quellouno antes descritas, pero por expresión morfológica son más recientes.

Fotografía 4.61 Escarpe de falla afectando depósitos cuaternarios en el cerro Televan con movimiento de tipo normal, asimismo se pueden apreciar escarpes secundarios de 0.40 metros de altitud.
En el cerro Otocani identificamos la mayor expresión de actividad tectónica cuaternaria, llegando a contabilizar hasta 16 escarpes de fallas que varían entre 3.5 metros y 1.50 metros, todos estos afectando depósitos aluviales, lacustres y morrenas (Fotografías 4.63 y 4.64). El análisis microtectónico en cada uno de estos escarpes dieron como resultado movimientos de tipo normal y escarpes con morfología fresca, sin alteraciones de la cara libre o faz libre. La actividad tectónica desarrollo grandes procesos de movimientos en masa, es así que se observan megadeslizamientos cuyas coronas coinciden con los escarpes de fallas, que muchos casos cortan los depósitos de los deslizamientos. Finalmente, al pie de estos escarpes de fallas se observaron cuñas coluviales bien conservadas y sang ponds.
Fotografía 4.64 Vista panorámica del sector de fallas ubicadas en el cerro Otocani.
En el cerro Raizpata y Solan, el número de escarpes de falla es menor al observado en el cerro Otocani, llegándose a observar un número máximo de 7 escarpes (Fotografía 4.65). La dirección principal de los escarpes son N 145° E y buzan hacia el suroeste con ángulos subverticales, llegando a conectarse con fallas secundarias de orientación N-S, formando ángulos agudos (Fotografía 4.66). Los escarpes de fallas principales tienen altitudes que varían entre 8 y 2 metros, son subparalelos y se encuentran afectando depósitos aluviales y de morrenas con movimientos de tipo normal y normal-sinestral. En este sector se puede observar de mejor forma la deformación con componente lateral o de rumbo, ya que desplazan drenajes y morrenas, así como también fallas antintéticas. Finalmente, la buena conservación y dimensiones de las caras libres sugieren actividad reciente y acumulaciones de sismos.

En la margen izquierda del río Mapacho, frente a la localidad de Solan, se aprecian algunas evidencias de actividad tectónica, por ejemplo en el cerro Rancaypata, se aprecian dos escarpes de falla subparalelos de tipo normal, con 3 metros de altitud y afectando depósitos de cobertura cuaternaria (Fotografía 4.67), estos también se encuentran asociados a procesos de movimientos en masa. La orientación preferencial de estas estructuras sigue siendo noroeste-sureste.

En las alturas de la localidad de San José de Sahuay, y a lo largo de 12 kilómetros observamos fallas en la parte alta de la margen derecha del río Mapacho con dirección noroeste-sureste, en el cerro Parpay, observamos escarpes de fallas que coinciden con coronas de megadeslizamientos (Fotografía 4.68), tanto en Parpay como en Churuyoc. Los escarpes tienen una dirección N 135° E y buzamientos hacia el suroeste, lo que facilitó los procesos de movimientos en masa en la margen derecha del río. Los escarpes tienen aspectos frescos, afectan depósitos aluviales, lacustres, de morrenas y los depósitos propios de los deslizamientos con movimientos verticales de tipo normal, dando una idea de la elevada actividad tectónica del sector. Los desniveles de la superficie generados por las fallas varían entre 15 y 3 metros de altitud. En la cumbre del cerro Churuyoc (Fotografía 4.69), se observaron 7 escarpes de fallas, su actividad dio origen a procesos de movimientos en masa.

Fotografía 4.65 Escarpes de fallas afectando morrena en el cerro Solan, la conservación morfológica de todas estas estructuras nos sugieren actividad reciente.
Fotografía 4.66 Escarpes de fallas afectando morrena en el cerro Solan, la conservación morfológica de todas estas estructuras nos sugieren actividad reciente.

Fotografía 4.67 Escarpes de fallas subparalelos en la cima del cerro Rancaypata, frente a la localidad de Solan.
Fotografía 4.68 Escarpe de falla de 15 metros de altitud y con buzymiento a favor de la pendiente que da lugar a la generación de procesos de movimientos en masa.

Fotografía 4.69 Escarpes de fallas en la margen derecha del río Mapacho, se pueden apreciar los desniveles y/o deformación de la superficie generados por la actividad tectónica.
Sector de fallas Challabamba y Paucartambo, se ubican entre las localidades del mismo nombre y en ambas márgenes del río Mapacho. Las fallas activas y cuaternarias se distribuyen a lo largo de 20 kilómetros en segmentos de aproximadamente 8 kilómetros cada uno y en forma subparalela. La morfología de los escarpes sugieren actividad tectónica cuaternaria y activa, de acuerdo a la conservación de la faz libre y a los depósitos que afectan.

Las fallas tienen direcciones preferenciales N 140° E y buzamientos hacia el suroeste, aunque también se apreciaron estructuras antitéticas (Fotografía 4.70). En el cerro Chaupiorjo, en la margen izquierda del río Mapacho, se observaron escarpes de fallas subparalelas, que a partir del análisis cinemático pudimos identificar movimientos de tipo inverso previos a los movimientos de tipo normal (Fotografías 4.71 y 4.72), dando así una idea del cambio de esfuerzos durante en Cuaternario en este sector; creemos que los movimientos inversos se pueden correlacionar con los observados en la provincia de Cusco, Paruro, Acomayo y Canchis, entre otros, dando idea de un estado de esfuerzos compresivo regional durante el Cuaternario inferior. Las fallas afectan mayormente depósitos aluviales y de deslizamientos dando una idea de su actividad.

Fotografía 4.70 Escarpe de falla en la margen izquierda del río Mapacho, a la altura de la localidad de Challabamba. Se aprecia el desnivel que genero en la superficie y su buen estado de conservación, al pie del escarpe se pudieron observar cuñas coluviales que indican su actividad tectónica.

Fotografía 4.71 Vista lateral de la deformación compresiva de los depósitos fluvioglaciares producto de movimiento de la falla. Se puede apreciar la distribución y alineación de los fragmentos de rocas y de matriz con relación al plano de falla.
En la margen derecha de río Mapacho y camino a Tres Cruces (Mirador de la salida del Sol), se observaron escarpes de fallas paralelos entre sí, con rumbos promedio a N 135° E y buzamientos subverticales hacia el suroeste, estas fallas se extienden a lo largo de 15 kilómetros y también presentan segmentos secundarios generando estructuras tipo echelón y con buzamientos opuestos al principal. Las fallas afectan claramente rocas paleozoicas y su cobertura cuaternaria. Se pudieron identificar una cronología de movimientos, siendo los más recientes de tipo normal y normal-sinestral, estos últimos generando desplazamientos laterales de los cursos de ríos (Fotografía 4.73).

En el sector de Tres Cruces, se pudieron observar un conjunto de tres escarpes de fallas, donde las caras libres se encuentran cubiertas en parte por vegetación típica de altura, estos escarpes tienen una configuración subparalela y por su conservación morfológica se pueden correlacionar con las deformaciones del Cuaternario medio-superior (Fotografía 4.74 y 4.75). Estas estructuras tienen altitudes que varían entre 1-4 metros y se extiende a lo largo de 9 kilómetros con una orientación promedio N 125° E y buzamientos hacia el noreste, que en algunos casos coinciden con coronas de deslizamientos ubicados en el frente orogénico. Al pie de las fallas se formaron charcas de agua o sangpods.

Finalmente, entre el tramo de Paucartambo y Ocongate se pueden observar segmentos de fallas con dirección preferencial noroeste-sureste y con longitudes que varían entre 15 y 0.7 kilómetros. Las fallas se encuentran de igual forma en las partes altas en ambas márgenes del río Mapacho.

Por ejemplo, frente a la localidad de Paucartambo se observan escarpes erosionados que coinciden con coronas de deslizamientos, se puede advertir que los materiales del deslizamiento se encuentran afectados por la falla. Por la morfología de los escarpes podemos asignar a estos como de edad Pleistocena.
Fotografía 4.73 Escarpe de falla en las altura del cerro Sinchuyoc, se puede observar el estado fresco de la estructura tectónica que sugiere actividad cuaternaria.

Fotografía 4.74 Escarpes de fallas subparalelas ubicadas a lo largo del camino al mirador de Tres Cruces. Las fallas desplazan con movimientos de tipo normal basamento rocoso y cobertura cuaternaria.
Fotografía 4.75 Escarpes de fallas en el sector de Tres Cruces, estas generan facetas triangulares y tienen una distribución subparalela.

Hacia el suroeste de la localidad de Paucartambo, exactamente en el cerro Pantillacocha que se encuentra camino a la localidad de Pilcopata, se identificaron escarpes de fallas en donde se alinean lagunas y charcas (Figura 4.37). A lo largo de la traza se pueden distinguir dos segmentos: el segmento este muestra un movimiento de tipo inverso y, asociado al mismo, escarpes secundarios producto de la propagación de la falla (Figura 4.38). El segmento oeste se caracteriza por presentar dos escarpes continuos y por ser de menor altitud en comparación con el segmento este. Por la conservación y los materiales que afectan determinamos a estas como activas.

En la proyección de estos segmentos también se identificaron fallas con direcciones este-oeste, con segmentos secundarios conectándose a la traza principal. Por la distribución de deformación se observa un estilo de deformación asociado a un componente de rumbo siniestral, generando depresiones y asemejándose a deformación tipo pull-apart.

A lo largo del sistema de fallas Ocongate-Paucartambo-quebrada Honda se pueden observar grandes deslizamientos en ambas márgenes del río Mapacho, donde las coronas de los deslizamientos coinciden con las trazas de fallas. En la Figura 4.39 se observan escarpes de 35 metros de altitud con dirección noroeste-sureste en la margen derecha del río Mapacho.

Por ejemplo, en el cerro Naranjayoc se advierten reactivaciones que cruzan el cuerpo de los deslizamientos, depósitos que aún no se encuentran consolidados y que nos estarían sugiriendo su actividad reciente. Asimismo, en las zonas donde se identificaron las fallas hay escasa vegetación, con excepción de la zona al pie de los escarpes donde la vegetación crece en las cuñas coluviales o en las depresiones generadas por la deformación de las fallas. Existen depósitos fluvioglaciares deformados y desplazados por las trazas de fallas, estos depósitos constituyen los mejores marcadores para cuantificar la deformación.

Por otro lado, en las cumbres de los cerros Solán, Parpay y Antacahuarina se pueden ver fallas normales con movimiento opuesto a la pendiente y afectando cobertura cuaternaria dispuesta sobre rocas paleozoicas. Todas estas estructuras que se extienden a lo largo de 130 kilómetros, aproximadamente, son evidencia de una elevada actividad tectónica y, en base a la conservación de los escarpes y de los materiales a los cuales afecta esta actividad, fue también elevada durante el Cuaternario.
Figura 4.37 Escarpes de fallas, bien conservados, frente a la localidad de Paucartambo. Se trata de fallas inversas con escarpes paralelos secundarios asociados a la propagación.

Figura 4.38 Distribución de la deformación en la margen derecha del río Mapacho, se puede observar un trazo principal y escarpes secundarios conectándose a este.
b) Sistema de fallas Ollantaytambo-Vilcabamba-Quimbiri

Se debe aclarar que no se encontraron muchas evidencias en superficie de actividad tectónica cuaternaria a lo largo de todo el sistema, debido posiblemente a que gran parte de ellas fueron erosionadas por la intensa actividad climática. A diferencia del anterior sistema de fallas descrito, en este sector no se observa un segmento o segmentos continuos, ellos se encuentran dispersos pero paralelos entre sí y con direcciones este-oeste. Los escarpes de fallas presentan longitudes máximas de 14 kilómetros y afectan depósitos fluvio-glaciares, aluviales y morrenas.

Un sustento sólido, para determinar la existencia de actividad cuaternaria en este sector, son los resultados obtenidos por Kennan (2008) sobre la historia del enfriamiento de las rocas del Batolito de Machupicchu y rocas de la cordillera del Vilcabamba; los resultados sugieren una rápida exhumación, mayor de 1 kilómetro/millón de años a inicios del Pleistoceno inferior. Esta es una sustentación, aunque sean resultados de dos muestras y no de un perfil completo, para poner como límites dos estructuras regionales que probablemente limitaron la exhumación.

Estas estructuras regionales se encuentran al norte y son paralelas a la falla Zurite, que constituye parte de la configuración de la deflexión de la cadena andina. El reconocimiento de estas estructuras se realizó utilizando imágenes satelitales y teniendo en cuenta morfologías o formación de morfologías asociadas a actividad tectónica. Una de las evidencias de actividad tectónica con ruptura superficial se ubica al sur del poblado de Vilcabamba, donde se puede observar un trazo de falla de 10 kilómetros que afecta desde rocas de basamento y de cobertura cuaternaria, incluyendo depósitos fluvio-glaciares y morrenas (Figura 4.40).

Falla Choquecancha

Se emplaza a lo largo de 25 kilómetros en la margen derecha del río Yanatile, en la provincia de Calca, frente a la localidad de Choquecancha.

Tiene una dirección preferencial de N 135° E y buzamiento promedio de 68° hacia el suroeste. El escarpe mejor conservado se ubica en el segmento norte, entre los cerros Conoorco y Picota, donde tiene una altitud de 8 metros y afecta depósitos aluviales y morrenas que se encuentran suprayaciendo a rocas paleozoicas con movimientos de tipo normal (Figura 4.41).

El segmento sur presenta un escarpe más desarrollado, generando así facetas triangulares de hasta 150 metros de altitud (Figura 4.42), acompañado a esta estructura se ven deslizamientos de gran extensión. Por la morfología, estas estructuras las consideramos como activas y tendrían una estrecha relación con el sistema de fallas Ocongate-Paucartambo-quebrada Honda, descritas en ambas márgenes del río Mapacho, en la cordillera Oriental.
Figura 4.40 Escarpe de falla ubicado al sur del poblado de Vilcabamba, donde es posible observar que afecta depósitos aluviales y fluvio-glaciares (segmento este).

Figura 4.41 Escarpes de falla conservados en la parte alta del cerro Conoorcco, entre las localidades de Choquecancha y Colca.
Fallas de la zona subandina

Desde las cumbres de la cordillera Oriental hacia las colinas de la Amazonía, la topografía varía notablemente; ya que se pueden observar más de 4000 metros de variación vertical a lo largo de una distancia de 40 kilómetros.

La variación geológica también es apreciable en la cordillera Oriental, las rocas que afloran principalmente son rocas metamórficas e intrusivas del Paleozoico, mientras que la zona subandina está constituida por depósitos continentales cenozoicos. La zona subandina en el sur del Perú tiene 50 kilómetros de largo aproximadamente y unos 50 kilómetros de ancho, tiene una tendencia preferencial de N 120° E desde el río Urubamba hasta la deflexión de Santa Cruz.

La densa selva tropical de la zona subandina y sus frecuentes lluvias generan condiciones adversas para los trabajos de campo, ya que solo existen afloramientos a lo largo de las riberas de los ríos. Es así que los primeros mapas neotectónicos de la zona subandina se realizaron en base al análisis de imágenes satelitales, información de compañías petroleras y datos de sismicidad. Posteriormente, Sébrier et al. (1985) ponen en evidencia deformaciones recientes en el frente orográfico; estudios más recientes como el de Espurt et al. (2008 y 2011) realizan interpretaciones estructurales mediante la construcción de secciones balanceadas y edades de termocronología.

Espurt et al. (2011) reconstruyen la deformación de los últimos 23 millones de años de la cuenca Camisea utilizando edades de enfriamiento de las rocas, datos de reflectancia de la vitrinita y la construcción de una sección transversal equilibrada (Figura 4.43 y 4.44).

Según la sección estructural, proponen un estilo de deformación relacionado a un dúplex interno y fallas inversas con buzamiento hacia el oeste principalmente, y relacionado con anticlinales. Asimismo, proponen que parte del acortamiento Neógeno fue acomodado en la falla inversa Mainique, que es un retrocabalgamiento.

Igualmente, Espurt et al. (2011) proponen un acortamiento horizontal de 23 kilómetros ocurrido en los últimos 6 millones de años, indicando un promedio de acortamiento de 3.8 milímetros/año, que es la misma tasa de acortamiento hallada por Dorbath et al. (1991) a partir de grandes sismos corticales. Finalmente, los catálogos sísmicos del IGP y USGS indican actividad sísmica superficial en este sector y que podrían estar relacionadas con el acoplamiento de la corteza oceánica con la corteza continental.

Al noroeste de la provincia de La Convención, adyacente al río Apurímac, y entre los poblados de Santa Rosa y Pichari, se ubica una falla con dirección promedio N 145° E y con 70 kilómetros de longitud. Esta estructura se emplaza en la margen derecha del río Apurímac, donde se observan facetas triangulares de hasta 300 metros y desviación de los cursos de ríos afluentes al río Apurímac, con movimiento de rumbo de tipo sinestral (Figura 4.45). Asimismo, es posible observar en el análisis de imágenes satelitales, depósitos aluviales afectados por la traza de falla.
Figura 4.43 Mapa geológico estructural de la cuenca Camisea (Espurt et al., 2008).
Los catálogos de sismos superficiales del IGP y USGS en este sector indican actividad sísmica, con sismos que varían entre 5.1 y 3.0 grados de magnitud. Datos recientes publicados por Devlin et al. (2012), en base a perfiles que cruzan la cordillera Oriental hasta la llanura amazónica, indican actividad sísmica superficial en la prolongación norte de la falla Santa Rosa-Pichari, proponiendo un bloque emergente (cordillera Oriental) en base a sismicidad superficial y profunda (80 kilómetros), donde las soluciones de los mecanismos focales dan como resultado fallas de tipo inverso.

Figura 4.44 Sección balanceada de la cuenca Camisea, del pongo de Mainique, hasta la cuenca Ucayali. (Tomado de Espurt et al., 2011).

Figura 4.45 Facetas triangulares asociadas a la falla Santa Rosa-Pichari y ubicadas en la margen derecha del río Apurímac.
Más hacia el sureste, precisamente en la zona del frente orogénico, se tienen cuencas de piedemonte. Estas fueron descritas por Sébrier et al. (1985) como las cuencas de Pilcopata, Quince Mil y Candamo, las cuales están constituidas por abanicos aluviales neógenos y cuaternarios, en una zona de falla de tipo inverso limitando los sub-Andes con la cordillera Oriental. Igualmente, describen colinas a las que llaman Salvación y Mazuko, estas con un ancho de 30 a 40 kilómetros, formadas por crestas y valles con altitudes entre los 300 y 800 kilómetros. La deformación se caracteriza por afectar conglomerados neógenos y cuaternarios. Hacia el norte, la zona subandina está limitada por la llanura aluvial de Madre de Dios.

Por consiguiente, con los datos presentados anteriormente, más los mecanismos focales presentados por Stauder (1975), Suárez et al. (1983), Dorbath et al. (1986) y los recientes presentados por Devlin et al. (2012), podemos afirmar reactivaciones de las fallas del frente orogénico con movimientos de tipo inverso.

ESTADO DE ESFUERZOS PLIO-CUATERNARIOS

En el capítulo se proponen cambios en el régimen tectónico durante el Plio-cuaternario en la región de Cusco, que comprende parte de la cordillera Occidental, Altiplano y cordillera Oriental. Los datos muestran estados de esfuerzos compresivos con eje de acortamiento principal (σ₁) de N 58° E, que es compatible con la deformación Pliocena descrita por Cabrera (1988) en la cuenca cuaternaria del Cusco y por Lavenu (1988), Lavenu (1995) en el Altiplano boliviano. Asimismo, la Figura 4.46 muestra algunas deformaciones locales asociadas a una región extensional con dirección promedio N 15° E. Los datos ubicados en el frente orogénico son de Sébrier et al. (1985) y Mercier et al. (1992), quienes mencionan que aunque los datos fueron escasos, por la situación agreste y mucha vegetación de la zona, estos fueron suficientes para calcular los tensores de deformación.

El análisis microtectónico también sugiere que durante el Pleistoceno inferior a medio continuó el estado de esfuerzos compresivos con eje de acortamiento principal (σ₁) de N 52° E y deformaciones extensionales locales. De igual forma en el frente orogénico, Sébrier et al. (1985) y Mercier et al. (1992) mencionan depósitos aluviales y terrazas deformadas por fallas de tipo inversa (Figura 4.46). Para el Pleistoceno superior se observa un régimen extensional con una dirección de esfuerzo principal (σ₁) de N 15° E, esto de igual forma es coherente con los datos de Cabrera (1988).

Para el Holoceno, además de las medidas realizadas en el presente estudio, también se compilaron las realizadas por Cabrera (1988), Sébrier et al. (1985) y Benavente et al. (2010); a partir de esto se pudo compilar un total de 650 medidas de estrías, permitiendo el buen y equilibrado cálculo de tensores de esfuerzos, siendo el principal (σ₁) de N 6° E.

La distribución de la sismicidad superficial en la región es uniforme, a excepción del área de la cordillera de Vilcabamba donde se registran sismos profundos. En el frente orogénico, Dorbath et al. (1991) y recientemente Devlin et al. (2012) calculan, a partir de información instrumental, mecanismos focales de tipo inverso, sugiriendo la continuación del acortamiento en el frente orogénico. En la cordillera Oriental y Altiplano, sismos superficiales y reactivaciones de fallas (Pachatusan, Tambomachay Urcos, y Qoricocha) sugieren extensión con dirección promedio norte-sur.

IMPLICANCIAS GEODINÁMICAS

La génesis y evolución de grandes cadenas montañosas como los Andes, ha sido motivo de numerosos estudios en Ciencias de la Tierra. Este interés, que puede remontarse al siglo pasado, se basa en el hecho de que un relieve tan alto se caracteriza por actividad tectónica y magmática en contexto de convergencia de placas. El caso específico del Altiplano es particular junto a los Himalayas, ya que constituyen los relieves montañosos más altos de la superficie terrestre.

La tectónica de extensión aparece como una característica típica de deformación en las altas planicies andinas. En los Andes peruanos se encuentran varios sistemas de fallas activos de tipo normal, entre los principales tenemos: el sistema de falla de la Cordillera Blanca (Dalmaryrac, 1974; Megard & Philip, 1976; Sébrier et al., 1982, 1988; Bonnot & Sébrier, 1985), falla Quiches (Bellier et al., 1991), sistema de falla del arco volcánico del Perú (Benavente et al., 2010 y Benavente et al., 2012), y los sistemas de fallas del Cusco (Suárez et al., 1983; Cabrera, 1988; Sébrier et al., 1985; Mercier et al., 1992; Benavente et al., 2010).

Asimismo, en 1969 la falla Huaytapallana se reactiva con movimiento de tipo inverso-sinestral, siendo una excepción a la deformación extensiva de los altos Andes; esta reactivación fue interpretada como una respuesta al acoplamiento de placas. Benavente & Delgado (2012) ponen en evidencia también la falla de tipo inversa Amaru en la región del Cusco, cuya propagación genera reactivaciones de tipo normal-sinestral en las alturas de la cordillera Oriental, así como de tipo inverso.

En el presente trabajo se reporta un récord de estructuras cuaternarias y activas ubicadas entre las cordilleras Occidental, Oriental y el Altiplano. Son estructuras mayormente asociadas a movimientos de tipo normal de alta inclinación (>60°), producto de que las fuerzas verticales (peso litosférico) son más importantes que las horizontales, dando como resultado un sigma principal vertical asociado a extensión. Las reactivaciones con movimientos inversos estarían ligadas a la disminución del ángulo de subducción de la placa océánica, proceso que generaría mayor fricción, acoplamiento entre las placas de Nazca-Sudamericana y consecuente levantamiento de los Andes (Espurt et al., 2008).
Figura 4.46: Esfuerzos regionales deducidos del análisis microtectónico de fallas activas y cuaternarias en la región del Cusco.
Pero la evolución de los últimos 10 millones de años de los Andes peruanos son hasta el momento controversiales. Ya que existen dos fuentes distintas que precisan que el máximo acortamiento de los Andes fue hace 40 millones de años, mientras otra corriente afirma que la cadena de los Andes tiene historia más reciente, 10 millones de años.

Es así que diversas técnicas han sido y vienen siendo aplicadas en la última década con la finalidad de cuantificar la historia de alzamiento de la meseta andina (Barnes & Ehlers, 2009). Hay un cierto concenso sobre la formación del relieve topográfico durante los últimos 5 millones de años (Jordan et al., 2010), posterior al cese de la elevación hace 6 millones de años (Gregory-Wodzicki, 2000; Garzione et al., 2008).

La topografía actual del Altiplano supera los 4000 metros, las fallas cartografiadas acomodan la deformación cortical Cuaternaria (i.e. Costa et al., 2010) y marcan la evolución de la morfología regional y de los paisajes. Bajo estos resultados, se puede afirmar que la gran cantidad de fallas normales en la región del Cusco estaría ligada a una compensación topográfica de la litósfera.

Consecuentemente, la distribución espacial y la dirección de los rasgos tectónicos activos cuaternarios en el borde oriental de la cuenca altiplánica sugiere que esta región está sujeta a un régimen tectónico transcurrente-extensional, caracterizado por un esfuerzo horizontal máximo (σ_1) de dirección norte-sur (Figura 4.47), datos que son coherentes con los análisis de los datos GPS obtenidos durante 3 años (ver capítulo VIII). Entonces los datos corroboran la subsidencia actual del Altiplano con respecto de la cordillera Oriental, donde edades de enfriamiento de rocas (termocronología) y sismicidad cortical de tipo inversa indican exhumación.

Finalmente, el área de estudio se ubica en una zona donde la placa de Nazca se contornea; Schneider & Sacks (1987) muestran la variación de los esfuerzos en una zona donde se contornea la placa de Nazca a partir del análisis de sismos profundos (100 kilómetros), queda por definir si habría alguna relación con la deformación en superficie.
Figura 4.47 Muestra configuración espacial y análisis microtectónico de fallas cuaternarias de la parte central de la región Cusco, sugiriendo una evolución de la deformación tipo pull apart, coherente con el esfuerzo máximo vertical y con el vector de convergencia de la subducción de la Placa de Nazca. El análisis microtectónico de las rupturas recientes es compatible con los datos GPS. Los sismos corticales registrados por el Instituto Geofísico del Perú y el Servicio Geológico de los Estados Unidos se ubican a lo largo de estas estructuras, guardando una estrecha relación.
El volcán Ubinas se encuentra localizado en el departamento de Moquegua, a 60 km al este de la ciudad de Arequipa. Es considerado el más activo del Perú por sus 24 eventos volcánicos, registradas desde el siglo XVI hasta la actualidad. La recurrente actividad ha generado en ese lapso considerables daños en los poblados localizados alrededor del volcán, contaminando terrenos de cultivo y causando la muerte de algunas personas y un número no preciso de ganado, a consecuencia de epidemias desconocidas. Los antecedentes mencionados no se tomaron en cuenta para instalar un permanente sistema de monitoreo volcánico, a fin de formular un plan de contingencia y preparación de la población. Ello se hizo evidentemente necesario cuando se presentó la crisis volcánica en los meses de marzo e inicios de abril de 2006. En dicha oportunidad –y pese a los antecedentes históricos– el volcán Ubinas no contaba con un sistema de monitoreo volcánico continuo. Además, los pobladores del valle de Ubinas, que suman aproximadamente 3500 personas, tenían poco o ningún conocimiento del fenómeno y sus peligros asociados. Asimismo, las autoridades no contaban con un plan de contingencia ni con experiencia para hacer frente a la crisis volcánica. El 27 de marzo de 2006, el volcán Ubinas comenzó a emitir cenizas de manera leve, las que cayeron sobre la localidad de Querapi, que se encuentra a 4 km al sur del volcán y donde habitan 42 familias. El 1 de abril de 2006 se produjo la primera explosión y durante los días siguientes se incrementó de manera importante la actividad volcánica y las cenizas emitidas alcanzaron entre 1000 y 3500 m de altura sobre el cráter. Desde mayo hasta agosto de 2006, la actividad se mantuvo constante. Se produjeron repetidas caídas de cenizas, así como explosiones volcánicas violentas que arrojaron fragmentos de lava. A partir de septiembre de 2006, la actividad volcánica fue disminuyendo drásticamente, las explosiones volcánicas se hicieron más esporádicas y el volumen de cenizas emitidas fue mucho menor. Este tipo de actividad disminuyó en el 2007, y prácticamente cesó en el 2009. Con el propósito de monitorear la actividad volcánica, se constituyó un Comité Científico - creado mediante resolución N.º3768-2006-INDECI/11.0- el mismo que estuvo integrado por el INGEMMET, el IGP y la UNSA. Las primeras caídas de cenizas registradas en el valle de Ubinas afectaron al poblado de Querapi. Por esta razón, en una primera fase y de manera inmediata (20 de abril), las autoridades realizaron la evacuación de este poblado al refugio de Anascapa. El 3 de junio de 2006, el Comité Científico emitió el Comunicado N.º 8, donde recomienda al Sistema Regional de Defensa Civil de Moquegua (SIREDECI-Moquegua) elevar el nivel de alerta al color «naranja», ante el incremento de la actividad volcánica. En base a las recomendaciones emitidas, el SIREDECI-Moquegua toma la decisión de implementar la evacuación preventiva de los pobladores de las localidades de Tonohaya, San Miguel, Huatahua, Ubinas y Escacha, hacia el refugio de Chacchagén. El proceso de evacuación se llevó a cabo en dos etapas: en la primera etapa se evacuó a los pobladores de Tonohaya, San Miguel y Huatahua, el 9 de junio de 2006; en una segunda etapa se evacuó a los pobladores de Ubinas y Escacha, el 10 y 11 de junio del mismo año. En total se evacuó a cerca de 1356 personas. Los refugiados permanecieron en el albergue de Chacchagén durante más de un año, luego del cual fueron retornando a sus lugares de origen de manera progresiva, ante la disminución de la actividad eruptiva. Un censo realizado por el Comité Regional de Defensa Civil de Moquegua (CRDC-Moquegua), en diciembre de 2006, arrojó que en total permanecían en el albergue cerca de 832 personas. Para atender a los afectados por la crisis volcánica, se implementaron refugios en Anascapa y Chacchagén. El refugio de Chachagén albergó a más del 95% de la población evacuada. Durante una primera etapa en el albergue de Chacchagén se armaron 315 carpas, 137 módulos de vivienda, más de 40 letrinas (posos ciegos), un relleno sanitario y reservorios de agua. En una segunda etapa se construyeron el centro de salud, comedores, duchas, aulas, áreas de esparcimiento para niños, y se instalaron los sistemas de luz y telecomunicaciones. Los refugios fueron implementados considerando la Carta Humanitaria y las Normas Mínimas de respuesta en caso de desastre, considerados en el Proyecto Esfera. Por las características y servicios brindados en el refugio de Chacchagén, este es considerado uno de los mejor implementados en el mundo para atender crisis volcánicas. Es importante destacar que la gestión de la crisis volcánica fue compleja y difícil, ya que la erupción causó pánico en los pobladores.
INTRODUCCIÓN

Los estudios estratigráficos, estructurales y geomorfológicos son los métodos habituales que se han empleado en el reconocimiento y la caracterización de fallas cuaternarias. La investigación de la actividad tectónica es, generalmente, a partir de datos superficiales, con los cuales se puede interpretar la geometría y la cinemática de las estructuras tectónicas. Aunque la traza del plano de falla a veces es fácilmente reconocida en el campo, su configuración estructural en subsuelo es inferida; más aún cuando los escarpes suelen estar mal conservados o tienen una expresión incompleta. Finalmente, la información que se puede obtener a partir de las trincheras resulta limitada, ya que, en muchos casos, ésta no representa necesariamente la geometría de las fallas en profundidad.

Para ello, debemos recurrir a técnicas geofísicas, las cuales han demostrado tener éxito en la determinación de la geometría y en algunas características estructurales de la falla en las primeras decenas o cientos de metros por debajo de la superficie (Wang, 2002; Donne et al., 2007).

Hoy en día, un relativo reciente método geofísico se aplica con este objetivo, se trata de la tomografía eléctrica (Fleta et al., 2000; Giano et al., 2000; Storz et al., 2000; Suzuki et al., 2000; Verbeek et al., 2000; Demanet et al., 2001a, 2001b; Caputo et al., 2003, 2007; Wise et al., 2003; Colella et al., 2004; Rizzo et al., 2004; Nguyen et al., 2005, 2007; Fazzito et al., 2013). Mediante este método se puede obtener información de hasta 100 metros de profundidad de la falla; esta técnica geofísica, junto con estudios de campo, donde se reconstruye la evolución de la estructura, puede ayudar en la consecución de una mejor definición de la actividad neotectónica de la zona.

Entonces, los objetivos específicos de la investigación geoelectrica en zonas de fallas son: a) determinar la geometría de la falla; b) definir estructuras secundarias, como fallas ciegas y antitéticas y c) estimar el grado de inclinación de las estructuras.

En este trabajo presentamos resultados en 2D, obtenidos a través de la tomografía eléctrica, de las fallas más cercanas a la ciudad del Cusco consideradas con alto potencial sísmogénico, a partir de los estudios estructurales realizados en superficie; el método geofísico nos permitió complementar los estudios anteriormente descritos, contribuyendo a una mejor comprensión sobre la amenaza sísmica de la región.

Los seis perfiles realizados en cuatro zonas de fallas cuaternarias son analizados e interpretados en el contexto geológico. Las fallas estudiadas son la falla Cusco, que presenta mala expresión morfológica tanto en sus prolongaciones norte-sur y escasas pruebas cinemáticas en superficie; falla Pachatusan, donde se observa una zona de falla con centenas de escarpes de falla bien conservadas; y la falla Matinga, donde el escarpe es aparente, pero la proximidad a un poblado hace necesaria el empleo del método (Figura 5.1).

EQUIPAMIENTO Y METODOLOGÍA

los perfiles geoelectricos se realizaron con un Syscal Pro Switch (Iris Company), que se puede conectar a una matriz lineal de 48 nodos de electrodos, con 10 metros de separación máxima.

El problema de encontrar un modelo 2D, inverso a la distribución de la resistividad en un perfil, se resuelve numéricamente en la forma de un modelo de cubeta rectangular sencilla, por medio del programa de software RES2DINV, Geotomo. Este programa permite estimar la resistividad de las celdas (los parámetros del modelo) que ajusta las cantidades medidas en la superficie, dentro de cierta discrepancia. Al principio, las cantidades derivadas de las mediciones de campo se presentan en forma de una pseudosección, diagrama de contorno en el que los valores de resistividad aparente se asignan a una ubicación predefinida de acuerdo con el tipo de matriz utilizada (Telford et al., 1990). Durante la rutina de inversión los parámetros del modelo iniciales son modificados y mejorados mediante la resolución de una ecuación de mínimos cuadrados (Lines & Treitel, 1984).

En consecuencia, la tomografía eléctrica es un método de resistividad multielectrodico, basado en la modelización 2D de la resistividad del terreno, mediante el empleo de técnicas numéricas (elementos finitos o diferencias finitas). Con este método se calculan los valores de resistividad aparente medidos con los dispositivos geoelectricos sobre la superficie del terreno, para generar imágenes del subsuelo llamadas pseudosecciones donde se representan los valores de la resistividad verdadera de las diferentes zonas.
Figura 5.1 Ubicación de los perfiles de tomografía eléctrica.
Para determinar la resistividad verdadera del subsuelo, a partir de los valores de la resistividad aparente, se aplica la técnica de «inversión» (Loke, 2004).

El objetivo de la inversión geofísica eléctrica es encontrar un modelo de distribución de resistividades verdaderas en el subsuelo, que genere una respuesta similar a los valores de resistividad aparente medidos.

El método dispone de diferentes configuraciones y, para el presente estudio, aplicamos la configuración Wenner 2D y la configuración Dipolo-Dipolo. Con la configuración Wenner 2D se realizaron puntos de medidas cada 5 metros, obteniendo una profundidad máxima de investigación de 20 metros; mientras que con la configuración Dipolo-Dipolo se realizaron puntos de medidas cada 20 metros, alcanzando profundidades de 72 metros.

RESULTADOS E INTERPRETACIONES

Falla Pachatusan

Está representada por segmentos discontinuos y paralelos que se emplazan a lo largo de 21 kilómetros de largo por 3.5 kilómetros de ancho con dirección promedio N 130° E, y en altitudes que varían entre los 4100 y 4300 m. s. n. m. Se ubica al sureste de la ciudad del Cusco, aproximadamente a 5 kilómetros de distancia (ver capítulo IV).

Las fallas ponen en contacto rocas volcano-sedimentarias con depósitos aluviales, fluvio-glaciares y morrenas posiblemente relacionadas a la última glaciaciación -11 000 años- (Mercer & Palacios, 1977 y Mercer, 1979). Asimismo, se observan facetas triangulares de hasta 100 metros de altitud y, en la parte inferior, reactivaciones cuaternarias con saltos verticales que varían entre 20 metros y 1 metro, estas afectando depósitos fluvio-glaciares, morrenas y formando sand-ponds o charcas de agua alineadas a lo largo de la traza de falla.

Sección C1

Se realizó una sección transversal a la falla Pachatusan utilizando la configuración Dipolo-Dipolo (D-D). La longitud total de la sección fue de 820 metros, separando los electrodos cada 20 metros (Fotografía 5.1). El tiempo de inyección de corriente fue de 1 segundo y un mínimo de 3 mediciones repetidas en cada punto con el fin de obtener una desviación estándar <3 % para cada valor de resistividad aparente.

Fotografía 5.1 Muestra uno de los escarpes activos de la falla Pachatusan. Realizamos un perfil de una longitud de 820 metros, llegando a caracterizar a profundidad cinco trazas de fallas activas y con buzamientos hacia el sur.
La tomografía da como resultado una profundidad máxima de penetración de modelado de 65 metros. La figura 5.2 muestra una variación lateral de la resistividad. A lo largo de los 820 metros se puede observar una cobertura de resistividades bajas a moderadas, y a 20 metros de profundidad las resistividades son elevadas y en forma discontinua. La resistividad más elevada se encuentra entre los 300 y los 420 metros.

Las resistividades bajas están relacionadas con acumulaciones de agua, mientras que las que van entre 200 a 700 Ohm.m están relacionadas con la cobertura fluvi-glacial cuaternaria. Las resistividades altas corresponden a rocas mesozoicas y su discontinuidad corresponde o están limitadas por fallas, que perfectamente son correlacionadas con los escarpes de fallas observados en superficie (Figura 5.2), donde se aprecian morrenas y depósitos fluvi-glaciares desplazados verticalmente. Se puede ver que las fallas tienen una inclinación hacia el sur con un ángulo aproximado de 70°.

Falla Cusco

Tiene una orientación NO-SE, se emplaza longitudinalmente a lo largo del valle del Cusco. Con trabajos recientes ponemos en evidencia, por primera vez, la actividad cuaternaria de la falla Cusco, reconociendo dos tipos de movimientos de la falla. Al sureste de la microcuenca se observan los depósitos lacustres de la base de la formación San Sebastián deformados, sugiriendo una deformación compresiva. En la prolongación norte (sección C3-C3’), al nivel de la localidad de Poroy, se puede apreciar el escarpe de falla que se encuentra afectando depósitos coluviales y aluviales con movimiento de tipo normal, estos depósitos se encuentran en contacto fallado con la formación Maras.

A pesar de la actividad antrópica, determinamos que la falla Cusco muestra reactivaciones cuaternarias, siendo así una estructura con una historia larga e importante en el tiempo geológico; debido a su ubicación, en la ciudad del Cusco, es necesario realizar estudios detallados con la finalidad de caracterizar su potencial sismogénico. Por todo esto, para conocer la geometría y continuidad de la estructura a profundidad, realizamos perfiles geofísicos utilizando el método de tomografía eléctrica.

Sección C2 y C2’

Se realizaron dos secciones transversales, utilizando las configuraciones de Wenner y Dipolo-Dipolo.

Con la configuración Wenner se realizó un perfil de 750 metros de longitud, los electrodos estuvieron separados para este caso cada 5 metros, obteniendo una profundidad máxima de 20 metros (Figura 5.3). El tiempo de inyección de corriente fue de 1 segundo y un mínimo de 3 mediciones repetidas en cada punto, con el fin de obtener una desviación estándar <3 % para cada valor de resistividad aparente.

La tomografía con la configuración Wenner muestra variación lateral de la resistividad, ubicándose la resistividad más elevada entre los 220-700 metros y la resistividad baja a moderada entre 0 a 220 y 700 a 750 metros (Figura 5.3).

Las resistividades bajas están relacionadas con acumulaciones de agua, mientras que las que van entre 4 a 40 Ohm.m están relacionadas con los depósitos limo-arcillosos de la formación San Sebastián. Las resistividades altas corresponden a depósitos aluviales, la discontinuidad en el punto 720 metros corresponde a la falla Cusco, esta estructura pone en contacto la secuencia inferior con la secuencia superior de la formación San Sebastián (Figura 5.3).

Por consiguiente, las variaciones de resistividad entre los puntos 640 y 720 metros están relacionadas con la falla Cusco. Según el perfil, la estructura es subvertical, característica que favoreció para la reactivación con diferentes cinemáticas.

Con la configuración Dipolo-Dipolo se realizó un perfil de 420 metros de longitud y con espaciado de los electrodos cada 20 metros, llegando a conseguir profundidades de hasta 65 metros (Figura 5.4). El tiempo de inyección de corriente fue de 1 segundo y un mínimo de 3 mediciones repetidas en cada punto con el fin de obtener una desviación estándar <3 % para cada valor de resistividad aparente.

La tomografía con la configuración Dipolo-Dipolo muestra de 0 a 240 metros resistividades bajas a moderadas; a partir del punto 240 las resistividades aumentan, siendo las más elevadas las ubicadas entre los 320 y 440 metros. Las resistividades a profundidad son constantes, pero hacia el sur (a la derecha) las resistividades bajas se encuentran acuñadas por debajo de las resistividades altas.

Las resistividades bajas están relacionadas con acumulaciones de agua (por debajo de los 160 a 240 metros), mientras que van entre 3 a 20 Ohm.m están relacionadas con los depósitos limo-arcillosos de la formación San Sebastián. A partir de los 240 metros la resistividad aumenta y coincide con la falla Cusco, donde el movimiento de tipo inverso saca a superficie secuencias inferiores de la formación San Sebastián. Las resistividades que se encuentran entre los 320 y 420 metros están relacionadas con depósitos aluviales y fluviales (Figura 5.4).

Las resistividades altas corresponden a depósitos aluviales, la discontinuidad en el punto 720 metros corresponde a la falla Cusco, esta estructura pone en contacto la secuencia inferior con la secuencia superior de la formación San Sebastián (Figura 5.4). Además, se observa que la inclinación de la falla en los primeros 15 metros de profundidad es aproximadamente subvertical y, a
Figura 5.2 Falla Pachatusan, configuración Dipolo-Dipolo. Arriba: Perfil de tomografía eléctrica donde se observan resistividades altas discontinuas o con aparente variación lateral y por debajo de los 20 metros de profundidad. Abajo: Interpretación del perfil geofísico con la información geológica de superficie, podemos ver que las discontinuidades del basamento (altas resistividades) están controladas por fallas que afectan cobertura cuaternaria.
Figura 5.3 Falla Cusco, sector sur, configuración Wenner. Arriba: Perfil de tomografía eléctrica donde se observan resistividades bajas entre los 0-240 metros, valores relacionados con los depósitos finos de la formación San Sebastián; asimismo, las resistividades altas entre los 240 y 680 metros corresponden a depósitos fluviales y la variación en el punto 720 metros está relacionada con la falla Cusco. Abajo: Interpretación del perfil geofísico con la información geológica de superficie, podemos ver las resistividades altas en el medio del perfil, están relacionadas con un paleocanal del valle del río Huatanay.
Figura 5.4 Falla Cusco, sector sur, configuración Dipolo-Dipolo. Arriba: Perfil de tomografía eléctrica donde se observa una variación lateral de resistividades a partir de los 240 metros, está relacionada con la presencia de la falla. Abajo: Interpretación del perfil geofísico con la información geológica de superficie, podemos ver las dos fallas de propagación de tipo inverso. La estructura tiene un buzamiento hacia el sur.
partir de aquí, la estructura disminuye su inclinación. En el punto 320 es visible la alteración de la superficie del terreno producto de la reactivación de la falla. Por consiguiente, tenemos una propagación de falla de tipo inversa con buzamientos hacia el sur, el ángulo de inclinación es aproximadamente de 60° hacia el sur.

Sección C3 y C3’

Realizamos perfiles transversales en la prolongación norte de la falla Cusco, entre el Arco de Ticatica y Poroy.

Con la configuración Wenner se realizó un perfil de 240 metros de longitud, los electrodos estuvieron separados para este caso cada 5 metros, obteniendo una profundidad máxima de 20 metros (figura 5.5). El tiempo de inyección de corriente fue de 1 segundo y un mínimo de 3 mediciones repetidas en cada punto con el fin de obtener una desviación estándar <3 % para cada valor de resistividad aparente.

La tomografía con la configuración Wenner muestra resistividades altas entre 0 y 80 metros y a profundidades de 10 metros, a partir de aquí hasta los 240 metros se observan resistividades bajas uniformes, tanto lateralmente como verticalmente (Figura 5.5).

Las resistividades bajas están relacionadas con acumulaciones de agua (12-40 Ohm.m), mientras las que van entre los 40 a 115 Ohm.m están relacionadas con los depósitos limo-arcillosos y coluviales productos de la erosión de laderas. Entre 60 y 80 metros se observa un contraste claro de resistividad, que corresponde a la falla Cusco. Por consiguiente, las resistividades altas corresponden a un contacto fallado donde los depósitos aluviales cuaternarios se encuentran en contacto con la formación Maras (Figura 5.5).

La tomografía con la configuración Dipolo-Dipolo muestra una cobertura entre 30 a 20 metros de resistividades bajas, a más profundidad se observan resistividades altas que varían entre 392-1000 Ohm.m, en el núcleo de estas resistividades se pueden observar resistividades inferiores a 20 Ohm.m relacionadas posiblemente con acumulaciones de agua (Figura 5.6).

Con la configuración Dipolo-Dipolo se realizó un perfil de 480 metros de longitud, lo que nos permitió llegar a una profundidad de 76 metros y definir de mejor manera la zona de falla.

Las resistividades bajas están relacionadas con acumulaciones de agua, mientras las que van entre 30 a 200 Ohm.m están relacionadas con los depósitos aluviales. Tanto en los 80 y 320 metros se observan anomalías que se pueden seguir a profundidad, siendo estas debido a las fallas, estructuras que ponen en contacto depósitos cuaternarios con rocas de la formación Maras. Las fallas tienen inclinaciones o buzamientos subverticales y sentidos opuestos, formando estructuras tipo graben (Figura 5.6). Los escarpes en terreno son aparentes y nos dan idea de la acumulación de eventos sísmicos.

Todas estas características señaladas en la prolongación sur y norte, nos conducen a definir que la falla Cusco es una falla cuaternaria activa que se debe tener en cuenta en las evaluaciones de Ordenamiento Territorial, por emplazarse en el medio de la cuenca del Cusco.

Falla Matinga

Se ubica entre la zona de fallas de Pachatusan y Qoricocha. Está representada por un escarpe de falla de 10 metros de alto, aunque en la parte inferior de esta se observaron escarpes de 0.50 metros bien conservados que indican la última reactivación de la estructura.

La importancia de estudiar esta estructura, al igual que la falla Cusco, radica en que por encima de la traza de falla se constituyó el poblado, el cual es altamente vulnerable en caso se reactive la estructura.

La localidad de Matinga se ubica a 5 kilómetros de la ciudad del Cusco, a 2750 m. s. n. m., donde el trazo de falla tiene una dirección N 130° E. La falla afecta depósitos aluviales generando desplazamientos máximos de 10 metros.

La falla pone en contacto areniscas cuarzo feldespáticas, limoarcillitas rojas paleocenas con depósitos aluviales. Se observan facetas triangulares de hasta 20 metros de altitud en la prolongación este, en la parte inferior, reactivaciones cuaternarias con saltos verticales de 0.5 metros.

Sección C4

Se realizó una sección transversal a la falla Matinga utilizando la configuración Dipolo-Dipolo (D-D). La longitud total de la sección fue de 420 metros, separando los electrodos cada 20 metros. El tiempo de inyección de corriente fue de 1 segundo y un mínimo de 3 mediciones repetidas en cada punto con el fin de obtener una desviación estándar <3 % para cada valor de resistividad aparente.

La tomografía da como resultado una profundidad máxima de penetración de modelado de 80 metros. La figura 5.7, muestra una variación lateral de la resistividad a lo largo de los 420 metros. Se observa una cobertura de baja resistividad que varía entre 10 y 20 metros de profundidad, el mayor espesor de resistividad baja se ubica entre los puntos 160 y 320 metros, por debajo de estas se observan resistividades moderadas entre 170–350 Ohm.m. Las resistividades altas se ubican entre los puntos 0-160 metros, estos valores altos tienen directa relación con la zona de falla.

Las resistividades bajas están relacionadas con acumulaciones de agua, mientras las que van entre 40 a 200 Ohm.m están relacionadas con la cobertura aluvial cuaternaria (Figura 5.7).
Figura 5.5 Falla Cusco, sector norte, configuración Wenner. Arriba: Perfil de tomografía eléctrica donde se observa una variación lateral de resistividades relacionada con la presencia de la falla. Abajo: Interpretación del perfil geofísico con la información geológica de superficie, podemos ver la falla con buzamiento hacia el sur, indicando el límite o el contacto fallado de la formación Maras con los depósitos cuaternarios.
Figura 5.6 Falla Cusco, sector norte, configuración Dipolo-Dipolo. Arriba: Perfil de tomografía eléctrica donde se observa una cobertura de resistividad baja asociada a los depósitos cuaternarios y estas muestran anomalías o cambios bruscos relacionados con las fallas. Abajo: Interpretación del perfil geofísico combinado con la información geológica de superficie, podemos ver las fallas con buzamientos opuestos y formando estructuras tipo graben.
Figura 5.7 Falla Malriga, configuración Dipolo-Dipolo. Arriba: Perfil de tomografía eléctrica donde se observan resistividades altas discontinuas o con aparente variación lateral y por debajo de los 20 m de profundidad. Abajo: Interpretación del perfil geofísico con la información geológica de superficie puede observarse que los límites de las discontinuidades de resistividad coinciden con las fallas observadas en la superficie. Asimismo, vemos que la falla-maltrata tiene buceo subvertical.
Las resistividades que van entre los 170 a 320 Ohm.m corresponden a rocas de basamento constituidas por areniscas y limoarcillitas. A los 120 metros se observan altas resistividades relacionadas con una falla ciega de tipo inversa, que al parecer no altera la cobertura cuaternaria; mientras a los 160 metros se observa otra variación fuerte de resistividades relacionadas con la falla Matinga y que genera cambios o modifica la cobertura cuaternaria. Esta última estructura tiene una ligera inclinación hacia el sur, mientras que la falla ciega inversa presenta inclinación opuesta. Esto puede ser explicado por un cambio en el estado de esfuerzos regionales, siendo más antiguo en movimiento compresivo.
CAPÍTULO VI
FENÓMENOS SECUNDARIOS DETONADOS POR SISMOS

Los terremotos pueden producir, por el efecto del movimiento vibratorio característico, una serie de efectos inducidos, que dan lugar a grandes deformaciones y roturas del terreno, como son los fenómenos de remoción en masa y los fenómenos de licuefacción de suelos.

MOVIMIENTOS EN MASA

Introducción

Los terremotos son una de las causas de movimientos en masa, para entender los fenómenos de remoción en masa asociados a sismos, primero es conveniente revisar algunos conceptos básicos, propuestos por algunos autores, por ejemplo:

Keefer (1984) señala en relación a la magnitud del sismo, que las caídas y deslizamientos de rocas son disparados (detonados) con magnitudes locales de 4.0 Ml y las avalanchas con magnitudes locales de 6.0 Ml. En función de la intensidad sísmica, otros autores concluyen que la intensidad mínima para generar caídas es VI; para deslizamientos, desplazamientos laterales y flujos es VII; siendo la intensidad más baja para cualquier movimiento en masa una intensidad de IV. Por tanto, los parámetros más usados en estas relaciones son la magnitud e intensidad.

González de Vallejo et al. (2002) indican que una de las causas más frecuentes de daños asociados a terremotos son los movimientos en masa, aunque se requiere que la intensidad sea alta para que estos tengan lugar. Según datos empíricos, por debajo de la intensidad VIII no se han apreciado deslizamientos importantes. Algunos de los factores a considerar en la estimación de la susceptibilidad frente a los movimientos en masa por terremotos, son los siguientes:

- Laderas inestables o en condiciones precarias de estabilidad previas al terremoto.
- Pendientes elevadas.
- Suelos de baja resistencia o de estructura metaestable (arcillas rápidas, suelos colapsables, etc.).
- Escarpes rocosos con riesgo de desprendimientos.

Inducidos por sismicidad

Los movimientos en masa inducidos por sismos vienen a ser, por lo general, deslizamientos que se encuentran cortados por estructuras (fallas), las mismas que se pueden encontrar en la cabecera o en el cuerpo del deslizamiento, como por ejemplo los deslizamientos de Accos y Colcha, que presentan estructuras que cortan estos deslizamientos.

a) Deslizamiento de Accos

El deslizamiento de Accos se ubica al sureste con respecto al poblado del mismo nombre; tiene como dimensiones una longitud de 5.8 kilómetros desde la corona al pie del deslizamiento ubicado en el río Apurímac, y un ancho promedio de 3.26 kilómetros, con una pendiente de 23 %. El deslizamiento presenta estructuras activas en el cuerpo (Figura 6.1) que vienen cortándolo por la parte media; hacia la parte media y baja de este gran deslizamiento se emplazaron algunos poblados, los cuales se verían afectados por producirse la reactivación de alguna de las estructuras, considerando que estas son activas y los depósitos donde se asentaron son suelos no consolidados.

b) Deslizamiento de Colcha

El deslizamiento de Colcha se ubica al norte con respecto al poblado del mismo nombre, a 1.5 kilómetros en línea recta; tiene como dimensiones una longitud de 3.1 kilómetros desde la corona al pie del deslizamiento, y un ancho promedio de 1.42 kilómetros, con una pendiente de 32 %; presenta estructuras activas en el flanco derecho y otras estructuras cortan el deslizamiento desde la cabecera hasta el pie de este (Figura 6.2); en la parte media de este gran deslizamiento se emplazaron viviendas, las cuales se verían afectadas de producirse una reactivación de alguna de las estructuras considerando que estas son activas y los depósitos donde se asentaron son suelos no consolidados; además, el cuerpo del deslizamiento presenta surgencias de agua y en la parte baja se observan algunas reactivaciones como deslizamientos, derrumbes y algunos flujos de detritos pequeños.
Figura 6.1 Deslizamiento de Acocas: a) sin interpretación y b) con interpretación. En línea punteada se muestra la corona del antiguo deslizamiento, la línea negra viene a ser una falla precuaternaria y las líneas rojas son segmentos de falla activos, también se observan los poblados ubicados en la parte media y baja del deslizamiento.
Figura 6.2 Deslizamiento de Colcha: a) sin interpretación y b) con interpretación. En línea punteada se muestra la corona del deslizamiento, las líneas rojas representan segmentos de falla activas, también se observa el poblado emplazado en la parte media del deslizamiento, que podría ser afectado de producirse la reactivación de una de las estructuras.
Inducidos probablemente por sismicidad

a) Discriminación de los procesos inventariados en las franjas

Para realizar la discriminación de movimientos en masa, se tomó como base el inventario de peligros geológicos por franjas, realizado por la Dirección de Geología Ambiental y Riesgo Geológico del Instituto Geológico Minero y Metalúrgico (INGEMMET), en donde se registran los distintos tipos de movimientos en masa, usando para su tipificación la clasificación de Varnes (1978 y 1984) y Hungr et al. (2001). En la base de datos se detalla la ubicación, tipología del evento, la clasificación según Varnes y las posibles causas detonantes del evento.

Para la discriminación de los eventos, posiblemente detonados por sismos, se trabajó con imágenes satelitales y aéreas, boletines, y se hizo uso del Sistema de Información Geográfica (GIS). Se empezó a analizar uno a uno los procesos inventariados, tomando en cuenta como prioridad lo observado en campo. De un total de 656 peligros geológicos inventariados en las franjas 2 y 3, se llegó a determinar que 86 eventos fueron detonados probablemente por sismos, como se indica en el Cuadro 6.1.

b) Metodología, criterios, caracterización

No existe una metodología exclusiva para la caracterización de movimientos en masa inducidos por sismos. Dentro de los criterios que se tomaron para el desarrollo de este capítulo, se realizaron trabajos puntuales y la observación en campo, estos están basados en el volumen, el tamaño, la forma, la pendiente del terreno, la litología que presenta, la deformación que existe alrededor y la geomorfología.

Para este capítulo se realizó el inventario de algunos procesos probablemente detonados por sismos, siguiendo con los criterios indicados anteriormente (Cuadro 6.1)

FENÓMENOS DE LICUEFACCIÓN

Para conocer los fenómenos de licuefacción, primero es conveniente revisar algunos conceptos básicos, propuestos por varios escritores:

González de Vallejo et al. (2002) definen este término como la posibilidad de que una zona quede afectada por un determinado proceso, expresada en diversos grados cualitativos y relativos. Depende de factores que controlan o condicionan la ocurrencia del proceso, que pueden ser intrínsecos a los propios materiales geológicos o externos. También define suelos licuables, como aquellos «Suelos con contenido arenolimoso, en estado saturado, al experimentar esfuerzos cortantes anómalos y rápidos, permiten un aumento de las presiones intersticiales (por falta de drenaje), en que la resistencia al corte desaparece y el material se comporta como líquido, dando lugar a movimientos verticales y horizontales de su masa, que se traducen en deslizamientos, o en grandes asientos». De acuerdo con González de Vallejo et al. (2002), el fenómeno de la licuefacción, como también es conocido, provoca el fallo de las cimentaciones, rotura de taludes y deslizamientos. Los suelos susceptibles a perder parte de su resistencia ante solicitudes dinámicas son las arenas finas y fofas, las arenas y limos mal graduados. Otra de las condiciones necesarias para que tenga lugar la licuefacción es que el nivel freático esté alto, cerca de superficie, y que el grado de compactación sea bajo, equivalente a valores N de SPT inferior a 20 golpes.

De acuerdo con la observación de zonas afectadas por licuefacción, esta tiene lugar en las siguientes circunstancias:

- Sismos con magnitud igual o superior a 5.5 con aceleraciones superiores o iguales a 0.2 g.
- Por debajo de 15 metros de profundidad no se han dado licuefacciones.
- En la mayoría de los casos donde se han observado licuefacciones el nivel freático estaba a poca profundidad, inferior a 3 metros; por debajo de 5 metros la susceptibilidad de licuefacción es muy baja.

Sauter (1989) opina que el estado de licuefacción se presenta únicamente en suelos saturados y poco densos, como arenas y las arenas limosas sin consolidar. En su libro *Fundamento de Ingeniería Sísmica* (1989), define la licuefacción del suelo como la «Transformación de suelos granulares saturados y poco consolidados, por ejemplo arena, en una masa con propiedades de un líquido o fluido debido a la vibración del terreno causada por un sismo».

De igual manera, Rico & Del Castillo (1988) manifiestan que el fenómeno de licuación de suelo consiste en la pérdida rápida de resistencia al esfuerzo cortante, temporal o definitivo. Tal pérdida conduce al colapso a cualquier estructura civil edificada sobre o hecha de un material que entre en licuación.

La licuefacción es un efecto secundario durante terremotos. Se refiere a sedimentos poco o no consolidados y saturados de agua. Los depósitos en la superficie o en un nivel cercano de la superficie pueden perder su resistencia causados por el movimiento de la tierra. Cuando ocurre debajo de edificios u otras estructuras de construcción puede causar daños graves.
<table>
<thead>
<tr>
<th>Coordenadas X</th>
<th>Coordenadas Y</th>
<th>Tipo de peligro</th>
<th>Otros factores que influyen en los procesos</th>
<th>Ubicación</th>
<th>Comentario geodinámico</th>
</tr>
</thead>
<tbody>
<tr>
<td>220906</td>
<td>8345974</td>
<td>Caída de rocas</td>
<td>Taludes escarpados con rocas fracturadas (ignimbritas con fracturamiento planar).</td>
<td>Espinar</td>
<td>Bloques de rocas de tamaños de 3-3.5 metros de diámetro al pie de ladera en tramo de 2.5 kilómetros de longitud.</td>
</tr>
<tr>
<td>212426</td>
<td>8332981</td>
<td>Caída de rocas</td>
<td>Fracturamiento del sustrato (fracturas y diaclasas), pendiente del frente o talud rocoso volcánico (ignimbritas con taludes >50° hasta vertical).</td>
<td>Espinar</td>
<td>Ignimbritas fracturadas que generan bloques de hasta 3.5 metros de diámetro.</td>
</tr>
<tr>
<td>212680</td>
<td>8334706</td>
<td>Caída de rocas</td>
<td>Fracturamiento y erosión en el sustrato que generan bloques sueltos de 3-5 m de diámetro, taludes de roca declive, ignimbritas poco soldadas.</td>
<td>Espinar</td>
<td>Ignimbritas con fracturas y diaclasas, algo alteradas; bloques caídos de diámetros entre 2-5 metros.</td>
</tr>
<tr>
<td>817271</td>
<td>8381174</td>
<td>Caída de rocas</td>
<td>Diaciasmamiento en rocas tobáceas, escarpas subverticales.</td>
<td>Chumbivilcas, Santo Tomás</td>
<td>Acumulación de grandes bloques o clastos caídos mayores de 1 metro de diámetro.</td>
</tr>
<tr>
<td>817436</td>
<td>8418240</td>
<td>Caída de rocas</td>
<td>Fracturamiento intenso en el sustrato rocoso con laderas de fuerte pendiente.</td>
<td>Chumbivilcas, Colquemarca</td>
<td>Colinas altas con acumulación de bloques de rocas en las faldas del cerro, laderas noreste, sureste y suroeste.</td>
</tr>
<tr>
<td>187003</td>
<td>8395356</td>
<td>Caída de rocas</td>
<td>Fracturamiento intenso en la roca, pendiente natural favorable, meteorización y formación de bloques inestables, precipitaciones pluviales.</td>
<td>Chumbivilcas, Valle</td>
<td>Bloques inestables en ladera compuesta por granodioritas muy alteradas y fracturadas, en un área de 2 x 2 km². Filtraciones y oconales en el talud inferior.</td>
</tr>
<tr>
<td>818150</td>
<td>8534720</td>
<td>Alud</td>
<td>Litología del sustrato, pendiente muy fuerte de 50°-70°, discontinuidades en las rocas.</td>
<td>Urubamba</td>
<td>En las cumbres del Nevado Chicón se observan 2 lenguas de hielo agrietadas, bloques removidos, suelos inestables, propensos a caer hacia la quebrada, Chicón.</td>
</tr>
<tr>
<td>798560</td>
<td>8521503</td>
<td>Deslizamiento</td>
<td>Discontinuidades de las rocas, pendiente abrupta >70°, naturaleza del suelo, intensas precipitaciones pluviales.</td>
<td>Urubamba, Ollantaytambo</td>
<td>Zona de deslizamientos, se observan en la ladera varias escarpas, uno de ellos tiene su escarpa irregular que causa el asentamiento de terrenos en la margen izquierda del río Huarocondo en unos 500 metros de longitud. La ladera está cubierta por vegetación.</td>
</tr>
<tr>
<td>Coordenadas</td>
<td>Tipo de peligro</td>
<td>Otros factores que influyen en los procesos</td>
<td>Ubicación</td>
<td>Comentario geodinámico</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>--</td>
<td>----------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td></td>
<td>Provincia</td>
<td>Distrito</td>
<td></td>
</tr>
<tr>
<td>200979</td>
<td>8504390</td>
<td>Caída de rocas</td>
<td>Paucartambo</td>
<td>Caicay</td>
<td></td>
</tr>
<tr>
<td>203096</td>
<td>8503170</td>
<td>Caída de rocas</td>
<td>Paucartambo</td>
<td>Caicay</td>
<td></td>
</tr>
<tr>
<td>79810</td>
<td>8549555</td>
<td>Derrumbe</td>
<td>La Convención</td>
<td>Santa Teresa</td>
<td></td>
</tr>
<tr>
<td>79240</td>
<td>8550496</td>
<td>Derrumbe</td>
<td>La Convención</td>
<td>Santa Teresa</td>
<td></td>
</tr>
<tr>
<td>757329</td>
<td>8551184</td>
<td>Derrumbe</td>
<td>La Convención</td>
<td>Santa Teresa</td>
<td></td>
</tr>
<tr>
<td>756148</td>
<td>8554856</td>
<td>Derrumbe</td>
<td>La Convención</td>
<td>Santa Teresa</td>
<td></td>
</tr>
<tr>
<td>757293</td>
<td>8558775</td>
<td>Derrumbe</td>
<td>La Convención</td>
<td>Santa Teresa</td>
<td></td>
</tr>
<tr>
<td>181505</td>
<td>8490030</td>
<td>Derrumbe</td>
<td>Paruro</td>
<td>Yaurisque</td>
<td></td>
</tr>
<tr>
<td>207350</td>
<td>8500440</td>
<td>Derrumbe</td>
<td>Paucartambo</td>
<td>Caicay</td>
<td></td>
</tr>
</tbody>
</table>

- Substrato fracturado (F3), algo alterado (A2), pendiente abrupta del talud (75°), precipitación pluvial.
- Rocas lávicas fracturadas (F3), en corte de carretera con pendiente del talud abrupto (80°), discontinuidades favorables, intensas precipitaciones pluviales.
- Litología del sustrato (capas rojas), discontinuidades en las rocas, precipitaciones pluviales intensas, filtraciones, pendiente muy fuerte de 50°-70°, naturaleza del suelo o regolito, cortes artificiales.
- Litología del sustrato (luititas), discontinuidades en las rocas, precipitaciones pluviales intensas, filtraciones, pendiente fuerte de 35°-50°, naturaleza del suelo o regolito residual-coluvial, cortes artificiales.
- Litología del sustrato (capas rojas), discontinuidades en las rocas, pendiente muy fuerte de 50°-70°, naturaleza del suelo o regolito, cortes artificiales.
- Litología del sustrato (luititas, pizarras), discontinuidades en las rocas, pendiente fuerte de 35°-50°, naturaleza del suelo o regolito, cortes artificiales.
- Litología del sustrato (luititas pizarras, esquistos), discontinuidades en las rocas, pendiente fuerte de 35°-50°, naturaleza del suelo o regolito con gravas, arcillas y limos, cortes artificiales.
- Suelo residual constituido de arena, grava y limo, pendiente fuerte de 35°-50°, litología del sustrato (capas rojas), discontinuidades en las rocas (F4), algo meteorizadas (A2), precipitaciones pluviales intensas, filtraciones.
- Pendiente abrupta de 70°, discontinuidades en las rocas (F4), precipitaciones pluviales intensas, morfología.

- Desprendimiento de rocas desde las laderas ubicadas en la margen izquierda del río Vicasos, lo cual afecta la carretera, el fenómeno compromete clastos pequeños hasta bloques acumulados en la ladera como canales.
- Zona donde se produce la caída de materiales y bloques de hasta 1 metro de diámetro.
- Zona de arranque regular, sustrato muy fracturado. Caída de suelos y clastos del talud superior hacia la carretera, material depositado en la ladera.
- Zona de arranque regular de unos 70 metros de alto por 150 metros de longitud. Caída de suelos y clastos sobre la plataforma de carretera, fracturas abiertas, bloques colgados e inestables.
- Zona de derrumbes en el talud superior e inferior de la carretera que cruza la quebrada. Material depositado en el talud inferior a manera de escombres. Clastos angulosos.
- Zona de derrumbes en el talud de corte de carretera vertical, fracturas abiertas continuas, presencia de pirita en las capas de roca, caída de bloques de roca.
- Zona de derrumbes que afecta la carretera Santa María – Santa Teresa, caída de suelos y bloques de roca de hasta 1 metro de diámetro, material acumulado en el talud de corte.
- Zona de derrumbes que afecta dos desarrollos de carretera, asentamiento de suelo y rocas.
- Zona de derrumbes con arranque irregular que afecta material coluvial y roca muy fracturada, clastos a bloques de 2 metros de diámetro.
<table>
<thead>
<tr>
<th>Coordenadas</th>
<th>Tipo de peligro</th>
<th>Otros factores que influyen en los procesos</th>
<th>Ubicación</th>
<th>Comentario geodinámico</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td></td>
<td>Provincia</td>
<td>Distrito</td>
</tr>
<tr>
<td>799352</td>
<td>8520640</td>
<td>Derrumbe (capas rojas), pendiente abrupta</td>
<td>Unubamba</td>
<td>Maras</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>70°, naturaleza del suelo, calcita en las rocas.</td>
<td></td>
<td>Margen derecha, fracturas abiertas, bloques colgados.</td>
</tr>
<tr>
<td>800177</td>
<td>8518261</td>
<td>Deslizamiento (capas rojas, calcita), pendiente muy fuerte de 50°-70°, naturaleza del suelo, intensas precipitaciones pluviales.</td>
<td>Unubamba</td>
<td>Ollantaytambo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Deslizamientos en las laderas de la margen izquierda del río Huarocondo, asentamiento de suelos, variadas escarpas en el talud superior. Hacia la derecha se observan otras escarpas de deslizamientos, se ha reforzado la ladera por encima de la escarpa del deslizamiento.</td>
</tr>
<tr>
<td>819769</td>
<td>8553518</td>
<td>Deslizamiento (lultitas pizarrosas, esquistos), pendiente fuerte de 35°-50°, naturaleza del suelo o regolito constituido de arcilla, gravas y limos, precipitaciones pluviales intensas.</td>
<td>Caica</td>
<td>Lares</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zona de arranque regular en el talud inferior de 70 metros de alto x 70 metros de longitud. Se observa en el cuerpo del deslizamiento, ubicado en la parte inferior de la carretera, agrietamientos abiertos, salto principal de 40 metros, represó el río Lares.</td>
</tr>
<tr>
<td>191497</td>
<td>8478897</td>
<td>Deslizamiento (capas rojas poco consolidadas), pendiente de suave a moderada (35°), precipitaciones pluviales intensa, suelo residual constituido de arenas y limo, cortes artificiales.</td>
<td>Paruro</td>
<td>Paruro</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Escarpa principal irregular, semicircular, elongada con un salto principal de 2.5-3 metros x 85 metros de longitud, grietas longitudinales y transversales, semicirculares y lineales. Cerca de este se observan otros 2 deslizamientos menores. Deslizamiento activo.</td>
</tr>
<tr>
<td>207575</td>
<td>8501186</td>
<td>Caída de rocas (media de 20°-35°, discontinuidades.</td>
<td>Paucartambo</td>
<td>Caicay</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zona con peligro por caídas de rocas, bloques colgados e inestables. Activo.</td>
</tr>
<tr>
<td>208497</td>
<td>8455720</td>
<td>Derrumbe (volcánico-sedimentario, y suelo coluvial constituido de grava, arena y limo, precipitaciones pluviales intensa, pendiente abrupta de 40°-90°.</td>
<td>Acomayo</td>
<td>Acomayo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Derrumbe de gran magnitud que ha producido la caída de suelo y rocas (inactivo-joven), con una altura de 120 metros x 100 metros de longitud, con salto de más de 20 metros, se observa en el talud inferior clastos con diámetros de 1-5 metros que han rodado unos 280 metros hacia abajo.</td>
</tr>
<tr>
<td>227902</td>
<td>8465063</td>
<td>Derrumbe (lultitas pizarrosas muy fracturadas: F4 y meteorizadas: A3), suelo residual-coluvial constituido de gravas y arenas, pendiente abrupta de 60°, lluvias intensas estacionales, corte de carretera.</td>
<td>Quispicanchis</td>
<td>Quiquijana</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zona de derrumbes a lo largo de unos 400 metros de carretera, se ha colocado parcialmente muro de contención ciclópeo, ángulo de talud de corte de 80°, 15 metros de alto. Se han construido canales o zanjas de coronación para derivación de aguas pluviales.</td>
</tr>
<tr>
<td>757955</td>
<td>8604010</td>
<td>Derrumbe (discontinuidades en las rocas, naturaleza del suelo, precipitaciones pluviales intensas, pendiente media de 20°-35°.</td>
<td>La Convención</td>
<td>Quelcuño</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zona de derrumbe antigua reactivada en el talud de corte de carretera, hay caída de suelos y clastos a la trocha.</td>
</tr>
<tr>
<td>Coordenadas</td>
<td>Tipo de peligro</td>
<td>Otros factores que influyen en los procesos</td>
<td>Ubicación</td>
<td>Comentario geodinámico</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>---</td>
<td>-----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>X 774419</td>
<td>Y 8502342</td>
<td>Derrumbe</td>
<td>Anta</td>
<td>Zona de derrumbe con arranque irregular, involucra suelo y roca que cae en la trocha, 60 metros de alto x 200 metros de longitud. Hay bloques de hasta 0,5 metros, filtración al pie del derrumbe. En la parte alta se pueden observar antiguas zonas de arranque ya estabilizadas actualmente.</td>
</tr>
<tr>
<td>X 819239</td>
<td>Y 8560869</td>
<td>Deslizamiento</td>
<td>Calca</td>
<td>Escarpa cubierta por la vegetación, pero el salto puede ser observado y es de unos 2 metros ya que la carretera se ha asentado esa medida con respecto a su nivel inicial, longitud asentada es de 70 metros.</td>
</tr>
<tr>
<td>X 781894</td>
<td>Y 8569950</td>
<td>Deslizamiento</td>
<td>La Convención</td>
<td>Oooamba</td>
</tr>
<tr>
<td>X 821442</td>
<td>Y 8561924</td>
<td>Deslizamiento</td>
<td>Calca</td>
<td>Escarpa circular cóncava de un deslizamiento antiguo, el depósito presenta forma alargada y convexa en la margen izquierda de la quebrada Coyllabamba.</td>
</tr>
<tr>
<td>X 753190</td>
<td>Y 8581449</td>
<td>Deslizamiento</td>
<td>La Convención</td>
<td>Santa Ana</td>
</tr>
<tr>
<td>X 205479</td>
<td>Y 8500010</td>
<td>Movimiento complejo</td>
<td>Paucartambo</td>
<td>Calcay</td>
</tr>
<tr>
<td>X 770307</td>
<td>Y 8595261</td>
<td>Movimiento complejo</td>
<td>La Convención</td>
<td>Echarate</td>
</tr>
<tr>
<td>X 768612</td>
<td>Y 8590415</td>
<td>Movimiento complejo</td>
<td>La Convención</td>
<td>Echarate</td>
</tr>
<tr>
<td>Coordenadas</td>
<td>Tipo de peligro</td>
<td>Otros factores que influyen en los procesos</td>
<td>Ubicación</td>
<td>Comentario geodinámico</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>---</td>
<td>-----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>X 184455</td>
<td>Movimiento complejo</td>
<td>Litología del sustrato (areniscas, lutitas pizarrosas), naturaleza del suelo, pendiente fuerte de 35°-50°.</td>
<td>Calca</td>
<td>Flujo de detritos depositados a manera de escombros en la ladera del talud, también hay caída de bloques de roca.</td>
</tr>
<tr>
<td>Y 8535532</td>
<td></td>
<td></td>
<td>Calca</td>
<td></td>
</tr>
<tr>
<td>X 798720</td>
<td>Movimiento complejo</td>
<td>Pendiente fuerte de 35°-50°, discontinuidades en las rocas, morfología.</td>
<td>Unubamba</td>
<td>Flujo de detritos y caída de rocas depositados como canales en las partes bajas de la ladera de la margen izquierda del río Vilcanota.</td>
</tr>
<tr>
<td>Y 8532100</td>
<td></td>
<td></td>
<td>Ollantaytambo</td>
<td></td>
</tr>
<tr>
<td>X 217512</td>
<td>Caída de rocas</td>
<td>Rocas sedimentarias limolita pizarrosa fracturada y poco alterada; pendiente muy fuerte de 50°-70°; discontinuidades en las rocas, presencia de cortes artificiales.</td>
<td>Paucartambo</td>
<td>Desprendimiento de bloques. L=10 metro.</td>
</tr>
<tr>
<td>Y 8542172</td>
<td></td>
<td></td>
<td>Koshipata</td>
<td></td>
</tr>
<tr>
<td>X 218002</td>
<td>Caída de rocas</td>
<td>Rocas sedimentarias limo-arcillita, limolita fracturada y alterada; suelos coluviales con bloques, bolrones y grava; pendiente muy fuerte de 50°-70°; lluvias intensas, discontinuidades en las rocas.</td>
<td>Paucartambo</td>
<td>Bloques de roca en la ladera. L=370 metros.</td>
</tr>
<tr>
<td>Y 8519863</td>
<td></td>
<td></td>
<td>Paucartambo</td>
<td></td>
</tr>
<tr>
<td>X 188625</td>
<td>Derrumbe</td>
<td>Discontinuidades en las rocas, naturaleza del suelo coluvial-residual, precipitaciones pluviales intensas.</td>
<td>Calca</td>
<td>Derrumbe en la ladera de la margen izquierda del río Vilcanota, caída de suelos y bloques de roca de forma cubica de unos 2 metros de diámetro.</td>
</tr>
<tr>
<td>Y 8513588</td>
<td></td>
<td></td>
<td>Taray</td>
<td></td>
</tr>
<tr>
<td>X 810110</td>
<td>Derrumbe</td>
<td>Discontinuidades en las rocas, naturaleza del suelo, intensas precipitaciones pluviales, pendiente muy fuerte de 50°-70°, cortes artificiales.</td>
<td>Calca</td>
<td>Derrumbe en roca en la margen izquierda del río Yanatil, que está tapando terrenos de cultivo.</td>
</tr>
<tr>
<td>Y 8578788</td>
<td></td>
<td></td>
<td>Yanatil</td>
<td></td>
</tr>
<tr>
<td>X 790850</td>
<td>Derrumbe</td>
<td>Discontinuidades en las rocas, suelo residual-coluvial constituido de grava, arcilla, limo y arena, intensas precipitaciones pluviales, pendiente fuerte de 35°-50°, cortes artificiales.</td>
<td>Calca</td>
<td>Zona de derrumbe en el talud superior, involucra suelo y roca, materiales acumulados sobre la plataforma de la ladera, 30 metros de longitud x 40 metros de alto.</td>
</tr>
<tr>
<td>Y 8600730</td>
<td></td>
<td></td>
<td>Yanatil</td>
<td></td>
</tr>
<tr>
<td>X 800767</td>
<td>Derrumbe</td>
<td>Litología del sustrato (brachas), pendiente muy fuerte de 60°, intensas precipitaciones pluviales, suelo residual constituido de arena y grava, filtraciones, cortes artificiales.</td>
<td>Anta</td>
<td>Derrumbe con zona de arranque irregular de 60 metros de alto x 200 metros de longitud en el talud superior, involucra suelo y bloques de roca de 1-5 metros, tanto en el talud superior como inferior se ve la acumulación de bloques.</td>
</tr>
<tr>
<td>Y 8493238</td>
<td></td>
<td></td>
<td>Chinchaypuyjo</td>
<td></td>
</tr>
<tr>
<td>X 206945</td>
<td>Derrumbe</td>
<td>Capas rojas fracturadas (F3) algo alteradas (A2), pendiente fuerte de 35°-50°, precipitaciones pluviales intensas.</td>
<td>Paucartambo</td>
<td>Zonea de derrumbes en el talud superior de la carretera, zona de arranque regular de 50 metros de alto x 90 metros de longitud. Asentamiento de suelos y clastos rocosos.</td>
</tr>
<tr>
<td>Y 8499250</td>
<td></td>
<td></td>
<td>Caicay</td>
<td></td>
</tr>
<tr>
<td>X 184200</td>
<td>Derrumbe</td>
<td>Suelo residual constituido de arenas y gravas, pendiente de los taludes de corte muy fuertes de 50°-70°, litología del sustrato (areniscas, conglomerados), discontinuidades en las rocas, intensas precipitaciones pluviales, filtraciones.</td>
<td>Paruro</td>
<td>Derrumbe en el talud de corte de carretera hacia la plataforma, caída de suelos y bloques de roca, bloques fracturados e inestables.</td>
</tr>
<tr>
<td>Y 8487463</td>
<td></td>
<td></td>
<td>Yaurisque</td>
<td></td>
</tr>
<tr>
<td>Coordenadas</td>
<td>Tipo de peligro</td>
<td>Otros factores que influyen en los procesos</td>
<td>Ubicación</td>
<td>Comentario geodinámico</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>--</td>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>X 84345</td>
<td>Y 8599434</td>
<td>Litología del sustrato (lutitas pizarrosas), discontinuidades en la roca, suelo residual-coluvial constituido de grava, arena, arcilla y limos, cortes artificiales, pendiente fuerte de 35°-50°.</td>
<td>Calca</td>
<td>Zona de derrumbes del talud superior de carretera, compromete suelo y roca. Zona de arranque regular de 30 metros de alto x 150 metros de longitud.</td>
</tr>
<tr>
<td>X 800330</td>
<td>Y 8529055</td>
<td>Litología del sustrato (capas rojas, andesitas), pendiente abrupta >70°, discontinuidades en las rocas, naturaleza del suelo constituido de grava, limo y arena, calcita en la rocas, precipitaciones pluviales intensas, filtraciones, cortes artificiales.</td>
<td>Urubamba</td>
<td>Derrumbe del talud superior hacia la carretera, zona de arranque regular de 100 metros de longitud x 35 metros de alto.</td>
</tr>
<tr>
<td>X 797211</td>
<td>Y 8524530</td>
<td>Litología del sustrato (capas rojas), pendiente abrupta >70°, precipitaciones pluviales intensas, naturaleza del suelo, discontinuidades en las rocas.</td>
<td>Urubamba</td>
<td>Zona de derrumbes aguas arriba de la confluencia de la quebrada Amparaqui y el río Huacondo.</td>
</tr>
<tr>
<td>X 800015</td>
<td>Y 8519229</td>
<td>Litología del sustrato (areniscas, calizas), pendiente abrupta >70°, naturaleza del suelo constituido de gravas y arenas, calcita en las rocas, discontinuidades en las rocas, intensas precipitaciones pluviales.</td>
<td>Urubamba</td>
<td>Zona de derrumbes, arranque irregular, fracturas abiertas, bloques caídos de 0.8 metros, 300 metros de longitud x 35 metros de alto.</td>
</tr>
<tr>
<td>X 812771</td>
<td>Y 8525850</td>
<td>Litología del sustrato (capas rojas), pendiente media de 20°-35°, discontinuidades en las rocas, cortes artificiales, naturaleza del suelo constituido de gravas, arenas y limos, intensas precipitaciones pluviales, filtraciones.</td>
<td>Urubamba</td>
<td>Zona de derrumbes, fracturas abiertas, talud de corte subvertical, 30 metros de alto x 280 metros de longitud, caída de suelos.</td>
</tr>
<tr>
<td>X 822072</td>
<td>Y 8547984</td>
<td>Litología del sustrato (lutitas, areniscas), pendiente muy fuerte de 50°-70°, precipitaciones pluviales intensas, naturaleza del suelo o regolito constituido de arcilla, grava y arena, filtraciones, discontinuidades en las rocas.</td>
<td>Calca</td>
<td>En la margen izquierda del río Lares el material depositado producto del deslizamiento flujo, se observan deslizamientos en el talud superior de corte de carretera, asentamiento de suelo y rocas hacia la carretera.</td>
</tr>
<tr>
<td>X 820794</td>
<td>Y 8555521</td>
<td>Litología del sustrato (esquistos, lutitas pizarrosas), pendiente muy fuerte de 50°-70°, naturaleza del suelo o regolito constituido de arcilla, grava y limos, cortes artificiales.</td>
<td>Calca</td>
<td>Deslizamiento en el talud de corte superior, involucra suelo y roca en la ladera de la margen derecha, la escarpa no está bien definida por estar cubierta de vegetación. El área inestable abarca unos 500 metros por sectores con la presencia de derrumbes y deslizamientos.</td>
</tr>
<tr>
<td>Coordenadas</td>
<td>Tipo de peligro</td>
<td>Otros factores que influyen en los procesos</td>
<td>Ubicación</td>
<td>Comentario geodinámico</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>--</td>
<td>-----------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td></td>
<td>Provincia</td>
<td>Distrito</td>
</tr>
<tr>
<td>176241</td>
<td>8558745</td>
<td>Deslizamiento</td>
<td>Calca</td>
<td>Lares</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Litología del sustrato (esquistos, lutitas), naturaleza del suelo, intensas precipitaciones pluviales.</td>
<td>Escarpa circular de un deslizamiento antiguo, cono aluvial en la margen derecha, terreno removido.</td>
<td></td>
</tr>
<tr>
<td>821439</td>
<td>8561924</td>
<td>Deslizamiento</td>
<td>Calca</td>
<td>Lares</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Litología del sustrato (esquistos, lutitas), discontinuidades en las rocas, precipitaciones pluviales intensas, pendiente media de 20°-35°.</td>
<td>Deslizamiento con zona de arranque regular de 65 metros de longitud x 30 metros de alto, salto principal de 1.5 metros, saltos secundarios paralelos discontinuos, en el talud superior de carretera. También se observan escarpas de deslizamientos antiguos en la parte alta del cerro.</td>
<td></td>
</tr>
<tr>
<td>762581</td>
<td>85955690</td>
<td>Deslizamiento</td>
<td>La Convención</td>
<td>Echarate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Litología del sustrato (lutitas, areniscas, limoarcillitas), discontinuidades en las rocas, naturaleza del suelo, intensas precipitaciones pluviales, pendiente fuerte de 35°-50°.</td>
<td>Asentamiento de las capas sedimentarias por resbalamiento, plano de escollera, salto principal de >100 metros, escarpa semicircular recta. Reactivación de 2 pequeños deslizamientos en el plano del deslizamiento antiguo.</td>
<td></td>
</tr>
<tr>
<td>802900</td>
<td>8537526</td>
<td>Deslizamiento</td>
<td>Urubamba</td>
<td>Ollantaytambo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Litología del sustrato (lutitas pizarrosas, esquistos), pendiente fuerte de 35°-50°, discontinuidades en las rocas, naturaleza del suelo constituido de gravas, arcillas, arenas y limos, intensas precipitaciones pluviales, filtraciones.</td>
<td>Deslizamiento con 3 saltos escalonados de 1.5-6 metros, fuerte pendiente en la zona de arranque y el depósito. La zona de arranque está avanzando hacia las partes altas del cerro, la geometría del deslizamiento es ovalo-alargada de +/- 100 metros de alto x 20 metros de longitud.</td>
<td></td>
</tr>
<tr>
<td>798785</td>
<td>8533850</td>
<td>Movimiento complejo</td>
<td>Urubamba</td>
<td>Ollantaytambo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Litología del sustrato (areniscas, esquistos), pendiente abrupta de >70°, discontinuidades en las rocas, morfología.</td>
<td>Caída de rocas/flujo de detritos en la margen izquierda del río Patakancha. En las laderas del cerro Pinculluna, se observan variadas escaramujas con una pendiente en el depósito de 40°, clastos angulosos, con longitudes de 300-400 metros.</td>
<td></td>
</tr>
<tr>
<td>206405</td>
<td>8455446</td>
<td>Movimiento complejo</td>
<td>Acomayo</td>
<td>Acos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Naturaleza del suelo y sustrato, pendiente fuerte de 35°-50°, discontinuidades en las rocas, intensas precipitaciones pluviales, excepcionales.</td>
<td>Deslizamiento inactivo-maduro a viejo, que muestra una zona de arranque circular en la izquierda del río Acomayo, depósito de forma convexa a manera de flujo que fluyó por la ladera.</td>
<td></td>
</tr>
<tr>
<td>770183</td>
<td>8593305</td>
<td>Movimiento complejo</td>
<td>La Convención</td>
<td>Echarate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discontinuidades en las rocas, naturaleza del suelo, intensas precipitaciones pluviales, pendiente fuerte de 35°-50°.</td>
<td>Reactivación de deslizamientos menores en la parte alta del cuerpo y hacia el lado izquierdo. Escarpa circular cóncava, con forma de circo, depósito de material con forma de tonada en la ladera de la margen izquierda del río.</td>
<td></td>
</tr>
<tr>
<td>218615</td>
<td>8488206</td>
<td>Deslizamiento</td>
<td>Quispicanchis</td>
<td>Urco</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Litología del sustrato (lutitas pizarrosas con discontinuidades (F4), alteradas (A3), suelo residual superficial constituido de arcillas, gravas y limos, pendiente fuerte de 35°-50°, lluvias intensas, filtraciones.</td>
<td>Zona de deslizamiento, asentamiento de suelos y rocas. 4 deslizamientos en la ladera con escarpas irregulares, terreno removido. Zona crítica.</td>
<td></td>
</tr>
<tr>
<td>Coordenadas</td>
<td>Tipo de peligro</td>
<td>Otros factores que influyen en los procesos</td>
<td>Ubicación</td>
<td>Comentario geodinámico</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>--</td>
<td>-----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td></td>
<td>Provincia</td>
<td>Distrito</td>
</tr>
<tr>
<td>770311</td>
<td>8594589</td>
<td>Deslizamiento</td>
<td>La Convención</td>
<td>Echarate</td>
</tr>
<tr>
<td>216141</td>
<td>8485757</td>
<td>Hundimiento</td>
<td>Quispicanchis</td>
<td>Uros</td>
</tr>
<tr>
<td>175551</td>
<td>8572880</td>
<td>Derrumbe</td>
<td>Paucartambo</td>
<td>Chalabamba</td>
</tr>
<tr>
<td>804655</td>
<td>8544840</td>
<td>Derrumbe</td>
<td>Unubamba</td>
<td>Ollantaytambo</td>
</tr>
<tr>
<td>819483</td>
<td>8552520</td>
<td>Derrumbe</td>
<td>Calca</td>
<td>Lares</td>
</tr>
<tr>
<td>819399</td>
<td>8552620</td>
<td>Derrumbe</td>
<td>Calca</td>
<td>Lares</td>
</tr>
<tr>
<td>822562</td>
<td>8546781</td>
<td>Movimiento complejo</td>
<td>Calca</td>
<td>Lares</td>
</tr>
<tr>
<td>212000</td>
<td>8513750</td>
<td>Caída de rocas</td>
<td>Paucartambo</td>
<td>Huancarani</td>
</tr>
<tr>
<td>204300</td>
<td>8520800</td>
<td>Caída de rocas</td>
<td>Paucartambo</td>
<td>Colquepata</td>
</tr>
<tr>
<td>194600</td>
<td>8518100</td>
<td>Caída de rocas</td>
<td>Calca</td>
<td>Pisac</td>
</tr>
</tbody>
</table>

- Zona de arranque irregular, salto principal de unos 2 metros, asentamiento de suelo en la ladera de la margen izquierda. Hay otras escarpas pequeñas antiguas en la zona.
- Terrenos de depósitos aluviales que sobreyacen a pizarras.
- Zona de derrumbes que produce la caída de suelo y rocas a la plataforma de carretera, 300 metros de longitud x 30 metros de alto.
- Derrumbes con zona de arranque regular de 150 metros de longitud x 100 metros de alto, caída de clastos y bolones de hasta 6 metros de diámetro.
- Zona de derrumbes de 20 metros de alto x 150 metros de longitud compromete suelo y roca, ubicado en la margen derecha del río Lares, talud de corte de carretera de 60°-70°.
- Derrumbes de suelo en la ladera de la margen izquierda del río Lares de 180 metros de longitud x 150 metros de alto, causados por la erosión fluvial en la base. Sobre los derrumbes hay una escarpa antigua de geometría circular, cuyo depósito es de forma convexa.
- Desprendimiento de rocas desde la parte alta de la ladera, con bloques prismáticos y bolones de 2 metros en su longitud mayor, flujos de detritos depositados a manera de escombreras o conos sobre la ladera de la margen izquierda del río Lares.
- Bloques hileramétricos en la ladera.
- Bloques de roca en la ladera.
<table>
<thead>
<tr>
<th>Coordenadas</th>
<th>Tipo de peligro</th>
<th>Otros factores que influyen en los procesos</th>
<th>Provincia</th>
<th>Distrito</th>
<th>Ubicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>X 819490</td>
<td>Y 6855675</td>
<td>Deslizamiento del estrato (rosquillas, esquirlas, filas)</td>
<td>Cusco</td>
<td>Lares</td>
<td>Chinchaypucara</td>
</tr>
<tr>
<td>X 68506010</td>
<td>Y 197885</td>
<td>Deslizamiento del estrato (rosquillas, esquirlas, filas)</td>
<td>Cusco</td>
<td>Calca</td>
<td>Pucacahumbo</td>
</tr>
<tr>
<td>X 769651</td>
<td>Y 847794</td>
<td>Deslizamiento del estrato (rosquillas, esquirlas, filas)</td>
<td>Cusco</td>
<td>Ollantaytambo</td>
<td>Occllantaytambo</td>
</tr>
<tr>
<td>X 804248</td>
<td>Y 869539</td>
<td>Deslizamiento del estrato (rosquillas, esquirlas, filas)</td>
<td>Cusco</td>
<td>Urubamba</td>
<td>La Convención</td>
</tr>
<tr>
<td>X 796182</td>
<td>Y 8852013</td>
<td>Deslizamiento del estrato (rosquillas, esquirlas, filas)</td>
<td>Cusco</td>
<td>Urubamba</td>
<td>Ollantaytambo</td>
</tr>
<tr>
<td>X 762690</td>
<td>Y 8653685</td>
<td>Deslizamiento del estrato (rosquillas, esquirlas, filas)</td>
<td>Cusco</td>
<td>Urubamba</td>
<td>Ollantaytambo</td>
</tr>
<tr>
<td>X 804350</td>
<td>Y 8654080</td>
<td>Deslizamiento del estrato (rosquillas, esquirlas, filas)</td>
<td>Cusco</td>
<td>Ollantaytambo</td>
<td>Ollantaytambo</td>
</tr>
<tr>
<td>X 803850</td>
<td>Y 8852680</td>
<td>Deslizamiento del estrato (rosquillas, esquirlas, filas)</td>
<td>Cusco</td>
<td>Ollantaytambo</td>
<td>Ollantaytambo</td>
</tr>
</tbody>
</table>

Neotectónica y peligro sísmico en la región Cusco

<table>
<thead>
<tr>
<th>Comentario geodinámico</th>
<th>Provincia</th>
<th>Distrito</th>
<th>Ubicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cada de rocas en el sector</td>
<td>Cusco</td>
<td>Lares</td>
<td>Chinchaypucara</td>
</tr>
<tr>
<td>Cada de rocas en el sector</td>
<td>Cusco</td>
<td>Calca</td>
<td>Pucacahumbo</td>
</tr>
<tr>
<td>Cada de rocas en el sector</td>
<td>Cusco</td>
<td>Ollantaytambo</td>
<td>Occllantaytambo</td>
</tr>
<tr>
<td>Cada de rocas en el sector</td>
<td>Cusco</td>
<td>Urubamba</td>
<td>La Convención</td>
</tr>
<tr>
<td>Cada de rocas en el sector</td>
<td>Cusco</td>
<td>Urubamba</td>
<td>Ollantaytambo</td>
</tr>
<tr>
<td>Cada de rocas en el sector</td>
<td>Cusco</td>
<td>Ollantaytambo</td>
<td>Ollantaytambo</td>
</tr>
<tr>
<td>Cada de rocas en el sector</td>
<td>Cusco</td>
<td>Ollantaytambo</td>
<td>Ollantaytambo</td>
</tr>
</tbody>
</table>

Neotectónica y peligro sísmico en la región Cusco

<table>
<thead>
<tr>
<th>Comentario geodinámico</th>
<th>Provincia</th>
<th>Distrito</th>
<th>Ubicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cada de rocas en el sector</td>
<td>Cusco</td>
<td>Lares</td>
<td>Chinchaypucara</td>
</tr>
<tr>
<td>Cada de rocas en el sector</td>
<td>Cusco</td>
<td>Calca</td>
<td>Pucacahumbo</td>
</tr>
<tr>
<td>Cada de rocas en el sector</td>
<td>Cusco</td>
<td>Ollantaytambo</td>
<td>Occllantaytambo</td>
</tr>
<tr>
<td>Cada de rocas en el sector</td>
<td>Cusco</td>
<td>Urubamba</td>
<td>La Convención</td>
</tr>
<tr>
<td>Cada de rocas en el sector</td>
<td>Cusco</td>
<td>Urubamba</td>
<td>Ollantaytambo</td>
</tr>
<tr>
<td>Cada de rocas en el sector</td>
<td>Cusco</td>
<td>Ollantaytambo</td>
<td>Ollantaytambo</td>
</tr>
<tr>
<td>Cada de rocas en el sector</td>
<td>Cusco</td>
<td>Ollantaytambo</td>
<td>Ollantaytambo</td>
</tr>
</tbody>
</table>
En general, la licuación del terreno se produce cuando se determinan tipos de suelos afectados por terremotos que desarrollan elevadas presiones intersticiales de forma rápida (sin drenaje), dando lugar a una pérdida de la resistencia al corte y a la rotura del suelo, que se comporta como si fuera un líquido. Dada las condiciones que deben presentar los suelos, la licuación se observa en los sectores ubicados junto a las riberas de los ríos o en el borde costero. Los daños originados por este proceso son espectaculares y se deben a grandes deformaciones. Uno de los síntomas de la presencia de este fenómeno es la formación de cráteres con eyeción de barros.

La licuefacción de suelos es un fenómeno que puede afectar los materiales granulares como son las arenas. La fuerza de resistencia de un suelo granular depende de la fuerza de contacto entre sus granos, la cual disminuye con la presión del agua intersticial. Cuando ocurre un sismo, la sacudida eleva la presión del agua en los poros del suelo y, si esta llega a igualar la fuerza de contacto entre los granos, la resistencia del suelo se reduce a cero. En este caso, la capacidad de carga del suelo es nula y efectivamente el suelo se comporta durante la sacudida como un líquido y cualquier estructura cimentada en un suelo licuado se hunde. El fenómeno de licuación de suelos tiene un potencial destructivo muy alto y puede producir daño en un rango que va desde pequeños hundimientos y desplazamientos laterales (lateral spreading), hasta deslizamientos de grandes masas de suelos. Además, puede causar grandes asentamientos o inclinaciones en fundaciones y estructuras de retención (Kramer & Stewart, 2004).

Descripción de la licuefacción

Antes de un terremoto, la presión de poros se mantiene relativamente baja. Sin embargo, durante un terremoto se puede generar un incremento de esta presión hasta el punto donde las partículas pueden moverse fácilmente unas con respecto a otras. Como señalan Greene et al. (1994) las acciones que producen licuefacción en el suelo son las siguientes: las ondas sísmicas, principalmente las ondas de corte, en su paso a través de los estratos de suelos granulares saturados, distorsionan la estructura granular y causan el reordenamiento de los grupos sueltos de partículas (Figura 6.3) debido a la tendencia de los suelos sueltos a densificarse. Este reordenamiento de las partículas produce un incremento en la presión de poros bajo condiciones no drenadas.

Causas de ocurrencia de la licuación del suelo

Rico & Del Castillo (1988) aseguran que se conoce de dos causas que ocasionan la pérdida de resistencia de un suelo encaminado a un comportamiento licuable. Uno de estos orígenes es el incremento de los esfuerzos cortantes actuantes y el desarrollo correspondiente de presión de poros. O bien, el desarrollo rápido de elevadas presiones en el agua intersticial, quizá como consecuencia de un sismo, explosión u otros; esto conlleva a un colapso estructural rápido del suelo, cuyos vacíos, saturados de agua, tienden a reducirse, desarrollándose presiones en aquellos. La licuación casi instantánea ha ocurrido en arcilla saturada muy sensible y en arenas finas sueltas, sobre todo en condición saturada.

Hay que mencionar que los suelos granulares más susceptibles a la licuación son los finos, de estructura suelta, saturados. Estas características describen a las arenas finas y uniformes y a los suelos finos no plásticos, o sus mezclas. Algunos especialistas opinan que la resistencia de los materiales granulares es causada en primer lugar por la fricción entre las partículas y la tracción entre las caras de las partículas individuales. Miles de millones de partículas contribuyen a la resistencia de todo el material y cualquier pequeño cambio en las condiciones puede tener un gran efecto sobre esta resistencia.

Youd (1977) destaca que la posición que tienen las partículas en un recipiente puede cambiar radicalmente durante cambios cíclicos en la carga que reciben, como ocurre en un terremoto o al agitar un envase para compactar un polvo. La adhesión entre las partículas (1) mantiene un gran hueco. Una pequeña tensión en sentido contrario a los punteros del reloj (2) hace colapsar el hueco, y otra tensión mayor (3) forma nuevos huecos, que colapsan cuando la tensión revierte el sentido (4). (Véase Figura 6.4)

Los suelos susceptibles a licuefacción los podemos dividir de acuerdo a ciertos criterios:

Según el criterio geológico los suelos susceptibles a procesos de licuefacción son:

- Depósitos fluviales, aluviales, lacustres, coluviales y eólicos.
- Abanicos aluviales y playas.
- Depósitos recientes.
- Los rellenos.
- Suelos saturados.

Según el criterio de composición del suelo, los suelos susceptibles a licuefacción son:

- Suelos granulares.
- Limos y arenas finas.
- Arcillas.
- Suelos mal gradados.
- Suelos con partículas redondeadas.
Figura 6.3 Inducción de intrusiones arenosas por licuefacción: a) situación original del depósito, con sus características sedimentarias; b) a partir de un evento disparador, se induce la licuefacción, y el consecuente aumento de la presión de fluidos; c) el sedimento licuefactado se redepone, ocupando las fracturas extensivas generadas (Modificado de Allen, 1982 y Obermeier, 1998).

Figura 6.4 Fases de disgregación de partículas hasta la licuefacción.
Según el criterio del estado del material, susceptibles a la licuación son:
- Suelos poco densos.
- Suelos muy porosos.
- Suelos muy sueltos.
- Suelos poco resistentes.

Evidencias de licuefacción de suelos

En la región Cusco se tienen 33 zonas inventariadas como probables zonas donde se den los fenómenos de licuefacción de producirse un terremoto, ya sea por los antecedentes que se tienen o por los tipos de depósitos que son propensos a sufrir este tipo de deformación.

Las zonas identificadas con probabilidad de procesos de licuación detonados por sismos, son: Espinar, Langui, Layo, Marangani, Sicuani, Canas, San Pedro, San Pablo, Pumacanchi, Pitumarca, Accha, Accos, Sangarara, Acomayo, Quiquijana, Paruro, Labramarca, Andahuaylillas, Catcica, Tipon-Oropesa, Cusco (Cusco), Cusco (San Sebastián), Cusco (San Jerónimo), Anta (Izcuchaca), Anta (Zurite), Limatambo, Corao, Piuray, Colquipata, Pisac, Coya, Calca y Urubamba.

Todos los lugares identificados responden a diferentes tipos de depósitos los cuales son susceptibles a procesos de licuefacción tomando en cuenta los criterios antes mencionados. Evidencias de estos tipos se encuentran en los depósitos lacustres de la formación San Sebastián, estos vienen a ser las estructuras sedimentarias como: estructuras *ball and pillow*, sismitas, *slump*, etc. (Fotografía 6.1, 6.2 y 6.3)

Evidencias de estos tipos se registraron en los sismos históricos que se dieron en la región Cusco, los sismos más fuertes tuvieron magnitudes entre 5.5 y 6.5, generando algunos procesos de licuefacción, como los registrados en los sismos de 1650, 1950 y 1986 (Fotografía 6.4)

Fotografía 6.1 Estructuras *ball and pillow* en nivel de arena. Quebrada Tenería.
Fotografía 6.2 Nivel de mezcla asociado a un evento sísmico. Nótese el mayor grado de desorganización del nivel superior. Quebrada Cochapata.

Fotografía 6.3 Intrusión de arena donde las laminaciones de los niveles intruidos se deforman hacia el muro y techo. Quebrada Cochapata.
Fotografía 6.4 Agrietamientos del terreno, sobre depósitos lacustres de la formación San Sebastián en el terremoto del 31 de marzo de 1950, la escarpa tiene una altura de 35 centímetros y está ubicada al sur de la cuenca del Cusco y al sureste del distrito de San Sebastián. (Ericksen et al., 1954).

Otros ejemplos de procesos de licuefacción de suelos o asentamientos producidos por sismos, se dieron en los sismos del 15 de agosto del 2007 en Pisco y del 28 de octubre del 2011 en Ica; para estos casos los sismos fueron del tipo interplaca producto de la subducción. El sismo de Pisco tuvo una magnitud de 7.9 Mw con epicentro a 60 kilómetros de la ciudad de Pisco y a una profundidad de 26 kilómetros; y el de Ica presentó una magnitud de 6.8 Mw. Estos movimientos sísmicos produjeron diferentes procesos de licuefacción de suelos o asentamientos como volcanes de arena (Fotografía 6.5), agrietamientos en los terrenos (Fotografía 6.6 y 6.7) y asentamientos de vivienda (Fotografía 6.8 y 6.9), los cuales serán los mismos procesos que se darán en las zonas marcadas con peligrosidad media y alta, que muestran los mapas de análisis de peligrosidad a procesos de licuefacción de suelos o asentamientos en la región Cusco descritos en el Capítulo VI.
Fotografía 6.5 Vistas de procesos de licuación de suelos: Arriba: formación de volcanes de arena, en el sector de Cabeza de Toro y Chongos (margen derecha del valle de Pisco) y Abajo: es un acercamiento del volcán de arena, donde se pueden aún observar huellas de los fluidos.
Fotografía 6.6 Detalles de una zona de agrietamientos, mostrando estructuras roll-over en el sector entre Casalla y Chongos (valle de Pisco).

Fotografía 6.7 Zona de agrietamientos (Pisco).
Fotografía 6.8 Se observa el hundimiento de esta vivienda, producto de procesos de licuefacción de los suelos. Sector Tambo de Mora.

Fotografía 6.9 Asentamiento de viviendas por procesos de licuación de suelos, provocando los colapsos en las viviendas, Pisco 2007.
El volcán Ubinas se encuentra localizado en el departamento de Moquegua, a 60 km al este de la ciudad de Arequipa. Es considerado el más activo del Perú por sus 24 eventos volcánicos, registradas desde el siglo XVI hasta la actualidad. La recurrente actividad ha generado en ese lapso considerables daños en los poblados localizados alrededor del volcán, contaminando terrenos de cultivo y causando la muerte de algunas personas y un número no preciso de ganado, a consecuencia de epidemias desconocidas.

Los antecedentes mencionados no se tomaron en cuenta para instalar un permanente sistema de monitoreo volcánico, a fin de formular un plan de contingencia y preparación de la población. Ello se hizo evidentemente necesario cuando se presentó la crisis volcánica en los meses de marzo e inicios de abril de 2006.

En dicha oportunidad –y pese a los antecedentes históricos– el volcán Ubinas no contaba con un sistema de monitoreo volcánico continuo. Además, los pobladores del valle de Ubinas, que suman aproximadamente 3500 personas, tenían poco o ningún conocimiento del fenómeno y sus peligros asociados. Asimismo, las autoridades no contaban con un plan de contingencia ni con experiencia para hacer frente a la crisis volcánica.

El 27 de marzo de 2006, el volcán Ubinas comenzó a emitir cenizas de manera leve, las que cayeron sobre la localidad de Querapi, que se encuentra a 4 km al sur del volcán y donde habitan 42 familias. El 1 de abril de 2006 se produjo la primera explosión y durante los días siguientes se incrementó de manera importante la actividad volcánica y las cenizas emitidas alcanzaron entre 1000 y 3500 m de altura sobre el cráter. Desde mayo hasta agosto de 2006, la actividad se mantuvo constante. Se produjeron repetidas caídas de cenizas, así como explosiones volcánicas violentas que arrojaron fragmentos de lava. A partir de septiembre de 2006, la actividad volcánica fue disminuyendo drásticamente, las explosiones volcánicas se hicieron más esporádicas y el volumen de cenizas emitidas fue mucho menor. Este tipo de actividad disminuyó en el 2007, y prácticamente cesó en el 2009.

Con el propósito de monitorear la actividad volcánica, se constituyó un Comité Científico - creado mediante resolución N.º3768-2006-INDECI/11.0- el mismo que estuvo integrado por el INGEMMET, el IGP y la UNSA.

Las primeras caídas de cenizas registradas en el valle de Ubinas afectaron al poblado de Querapi. Por esta razón, en una primera fase y de manera inmediata (20 de abril), las autoridades realizaron la evacuación de este poblado al refugio de Anascapa. El 3 de junio de 2006, el Comité Científico emitió el Comunicado N.º 8, donde recomienda al Sistema Regional de Defensa Civil de Moquegua (SIREDECI-Moquegua) elevar el nivel de alerta al color «naranja», ante el incremento de la actividad volcánica. En base a las recomendaciones emitidas, el SIREDECI-Moquegua toma la decisión de implementar la evacuación preventiva de los pobladores de las localidades de Tonohaya, San Miguel, Huatahua, Ubinas y Escacha, hacia el refugio de Chacchagén. El proceso de evacuación se llevó a cabo en dos etapas: en la primera etapa se evacuó a los pobladores de Tonohaya, San Miguel y Huatahua, el 9 de junio de 2006; en una segunda etapa se evacuó a los pobladores de Ubinas y Escacha, el 10 y 11 de junio del mismo año. En total se evacuó a cerca de 1356 personas. Los refugiados permanecieron en el albergue de Chacchagén durante más de un año, luego del cual fueron retornando a sus lugares de origen de manera progresiva, ante la disminución de la actividad eruptiva. Un censo realizado por el Comité Regional de Defensa Civil de Moquegua (CRDC-Moquegua), en diciembre de 2006, arrojó que en total permanecían en el albergue cerca de 832 personas.

Para atender a los afectados por la crisis volcánica, se implementaron refugios en Anascapa y Chacchagén. El refugio de Chachagén albergó a más del 95% de la población evacuada. Durante una primera etapa en el albergue de Chacchagén se armaron 315 carpas, 137 módulos de vivienda, más de 40 letrinas (posos ciegos), un relleno sanitario y reservorios de agua. En una segunda etapa se construyeron el centro de salud, comedores, duchas, aulas, áreas de esparcimiento para niños, y se instalaron los sistemas de luz y telecomunicaciones. Los refugios fueron implementados considerando la Carta Humanitaria y las Normas Mínimas de respuesta en caso de desastre, considerados en el Proyecto Esfera. Por las características y servicios brindados en el refugio de Chacchagén, este es considerado uno de los mejor implementados en el mundo para atender crisis volcánicas.

Es importante destacar que la gestión de la crisis volcánica fue compleja y difícil, ya que la erupción causó pánico en los pobladores.
CAPÍTULO VII
MAPAS DE AMENAZA SÍSMICA

El principal objetivo de una evaluación de amenazas o de peligros es predecir o pronosticar el comportamiento de los fenómenos naturales potencialmente dañinos o, en su defecto, tener una idea de la probabilidad de ocurrencia de dichos fenómenos para diferentes magnitudes en diferentes escenarios. De este modo, se logra una apreciación del riesgo en zonas de influencia de amenazas, si se destinan estas zonas para usos que implican niveles de vulnerabilidad alta (en particular el uso habitacional).

Para obtener los mapas de amenaza o mapas de peligrosidad, teniendo como factor detonante un movimiento sísmico, se debe realizar el análisis de la susceptibilidad (susceptibilidad a movimientos en masa y susceptibilidad a procesos de licuefacción de suelos y/o asentamientos), luego el mapa de aceleración sísmica (producto del cálculo de la máxima magnitud posible generada por una reactivación de falla), para luego superponer ambos mapas utilizando un Sistema de Información Geográfica (SIG); y así obtener el mapa de peligrosidad (peligrosidad a movimientos en masa y peligrosidad a procesos de licuefacción de suelos y/o asentamientos), teniendo como detonante la reactivación de una falla.

Trabajos recientes proponen metodologías para la elaboración de mapas de amenaza o peligrosidad en el mundo, como por ejemplo en China (Xu et al., 2012; Liu et al., 2012); Turquía (Alparslan et al., 2008; Yilmaz, 2009); Pakistán (Kamp et al., 2008); entre otros. Con el fin de desarrollar una nueva metodología aplicada a nuestro territorio proponemos una, a partir de los trabajos mencionados líneas arriba, más la utilizada actualmente en la Dirección de Geología Ambiental y Riesgo Geológico del INGEMMET.

ANÁLISIS DE LA SUSCEPTIBILIDAD

Generalidades

La susceptibilidad es la probabilidad de que una zona sea afectada por un determinado proceso geológico (movimientos en masa o movimientos de ladera y procesos de licuefacción), expresada en grados cualitativos y relativos. Los factores que controlan o condicionan la ocurrencia de los procesos geodinámicos pueden ser intrínsecos o externos. El elemento más efectivo de su representación es el mapa de susceptibilidad, siendo su uso adecuado para planificadores, ingenieros, científicos y técnicos, encargados en general de labores de prevención y gestión de desastres.

Para analizar la susceptibilidad a los peligros naturales se consideran los factores que condicionan la ocurrencia de dichos procesos en una determinada área, para este caso los escenarios. El objetivo de dicho análisis es representar la probabilidad de ocurrencia de tales eventos en mapas de susceptibilidad.

Los mapas de susceptibilidad constituyen herramientas valiosas y necesarias para la prevención y mitigación de desastres naturales y la planificación territorial (Ayala et al., 2002). Una de sus funciones más resaltantes es la de indicar las zonas donde se hace necesaria o conveniente la realización de estudios específicos y a mayor detalle (áreas críticas).

Cabe destacar que los mapas de susceptibilidad, si bien identifican áreas potenciales donde se pueden generar peligros naturales, en ellos no figura la totalidad de zonas que se verán afectadas ni predicen cuándo ocurrirán los procesos. Además, se debe considerar que los límites de susceptibilidad señalados deben considerarse referenciales y no como valores absolutos (Fidel et al., 2006).

Para este estudio, se ha visto por conveniente realizar dos tipos de análisis de la susceptibilidad: el primero relacionado con el análisis de la susceptibilidad a los movimientos en masa; y por otro lado, viendo que los depósitos lacustres y los depósitos cuaternarios (fluviales, aluviales y coluviales) son aún depósitos incondensados, se realizó un análisis de la susceptibilidad a procesos de licuefacción de suelos y/o asentamientos.

Para realizar el análisis de susceptibilidad, se procedió a identificar zonas potenciales, relacionadas a fallas activas (fallas neotectónicas), entre las cuales se tienen 5 escenarios que están ligados a los sistemas de fallas: Tambomachay, Qoricocha, Pachatusan, Paruro y Amaru.

Susceptibilidad a los movimientos en masa

Luego de identificar los 5 escenario o áreas de investigación, se procederá a realizar el respectivo análisis de susceptibilidad a movimientos en masa en cada uno de los escenarios. Para ello se
tiene que contar con los siguientes parámetros (factores condicionantes): litología, geomorfología, pendientes y cobertura vegetal y uso de suelo.

El método usado será un modelo heurístico de combinación de factores (Carrara et al., 1995), cuyo objetivo principal es determinar las zonas más susceptibles en base a ponderaciones de los factores condicionantes. Esta metodología está basada en la preparación de mapas temáticos de factores condicionantes, y en la superposición de los mismos, y de esta manera establecer el grado de susceptibilidad en función de los pesos asignados para cada uno de los factores; los mapas son superpuestos con la ayuda de un Sistema de Información Geográfica (SIG), que permite el análisis automático de los datos y el establecimiento de base de datos asociada.

a) Mapas factores (variables)

Los factores utilizados para el análisis de la susceptibilidad a los movimientos en masa son los mapas de unidades litológicas, unidades geomorfológicas, unidades de pendiente del terreno y unidades de cobertura vegetal y uso de suelo (Cuadro 7.1).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Simbolo</th>
<th>Pesos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litología</td>
<td>L</td>
<td>0.4</td>
</tr>
<tr>
<td>Geomorfología</td>
<td>G</td>
<td>0.3</td>
</tr>
<tr>
<td>Pendiente del terreno</td>
<td>P</td>
<td>0.2</td>
</tr>
<tr>
<td>Cobertura vegetal y uso de suelo</td>
<td>CV</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 7.1

Ponderación de variables temáticas

Igualmente, cada factor condicionante y sus unidades se analizan de manera independiente para asignar ponderaciones a las unidades de cada mapa, de acuerdo al grado de susceptibilidad a la ocurrencia de movimientos en masa. El rango de valores usados en las ponderaciones van de 1 a 5 para identificar con facilidad el grado de susceptibilidad, el valor 1 significa una susceptibilidad «muy baja» y 5 una susceptibilidad «muy alta». A continuación, se presenta el análisis de cada factor condicionante:

- **Litología**

Esta variable es considerada como una de las más importantes en el análisis de la susceptibilidad por movimientos en masa, debido a su influencia directa en la generación de dichos procesos. Para ponderar las unidades litológicas se analizaron las propiedades geológicas y geotécnicas como el tipo y composición de la roca, el tipo de fracturamiento, grado de meteorización y calidad de roca. En el Cuadro 7.2 se muestra la relación de las unidades litológicas y los valores asignados de acuerdo al grado de susceptibilidad que presenta cada unidad a generar movimientos en masa.

- **Geomorfología**

Esta variable es importante en el análisis de la susceptibilidad a los movimientos en masa, dado que las unidades geomorfológicas son resultado de la acción de los diferentes procesos geológicos (Goudie et al., 1981). Para este estudio se toma como referencia el mapa geomorfológico elaborado por el Instituto de Manejo de Aguas y Medio Ambiente (IMA-2009) del Gobierno Regional de Cusco, donde se considera un factor importante en relación a la susceptibilidad, tomando en cuenta los aspectos de la altura relativa de los terrenos, la litología y las estructuras asociadas, geoformas de acumulación de diferente origen con incidencia directa en la estabilidad de vertientes o laderas. Todas las unidades identificadas se han ponderado tomando como referencia su relación con la susceptibilidad a generar movimientos en masa. En el Cuadro 7.3 se presenta dicha calificación.

- **Pendiente**

La pendiente, como factor condicionante, es un parámetro importante en la evaluación de todo tipo de procesos de movimientos en masa, por ello diversos autores consideran a esta variable como fundamental en el análisis de susceptibilidad (Aguilar & Mendoza, 2002; Restrepo & Velásquez, 1997; Mora & Vahrson, 1994; Van Westen & Terlien, 1996). La calificación de los intervalos de pendiente se ha realizado con el criterio de que a mayor pendiente la susceptibilidad será mayor. De esta forma, las áreas con menor pendiente son poco susceptibles a los movimientos en masa, pero pueden ser afectadas por eventos producidos en zonas adyacentes de mayor pendiente. Las inclinaciones menores a 5° se calificaron con valores de 1 (susceptibilidad muy baja), mientras que las pendientes mayores a 45° con valor 5 (susceptibilidad muy alta). Los valores asignados a los rangos de pendiente se muestran en el Cuadro 7.4.
Cuadro 7.2
Valoración de las unidades litológicas en relación al análisis de susceptibilidad a los movimientos en masa

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Subunidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depositos inconsolidados</td>
<td>I-1 Aluviales</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>I-2 Fluviales</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>I-3 Lacustres</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>I-4 Bofedales</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>I-5 Fluviglaciares</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>I-6 Morrenas</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>I-7 Coluviales, eluviales</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>I-8 Travertinos</td>
<td>3</td>
</tr>
<tr>
<td>Rocas intrusivas</td>
<td>II-1 Diortas y gabros</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>II-2 Granodioritas y granitos</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>II-3 Monzonitas</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>II-4 Tonalitas</td>
<td>3</td>
</tr>
<tr>
<td>Rocas volcánicas</td>
<td>III-1 Lava andesitas, dacitas y riolitas</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>III-2 Lava andesitico-basálticas y escorias</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>III-3 Lavas, piroclastos y brechas</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>III-4 Tofas soldadas, ignimbritas</td>
<td>3</td>
</tr>
<tr>
<td>Rocas volcánico-sedimentarias</td>
<td>IV-1 Areniscas, conglomerados y volcánicos interestratificados y brechas</td>
<td>3</td>
</tr>
<tr>
<td>Rocas sedimentarias</td>
<td>V-1 Calizas y margas</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>V-2 Areniscas y lutitas</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>V-3 Lutitas, limolitas y areniscas</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>V-4 Areniscas, lutitas y conglomerados</td>
<td>5</td>
</tr>
<tr>
<td>Rocas metamórficas</td>
<td>VI-1 Pizarras, filitas y esquistos</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>VI-2 Gneis, granulitas y cuarcitas</td>
<td>4</td>
</tr>
</tbody>
</table>

Cuadro 7.3
Valoración de las unidades geomorfológicas en relación al análisis de susceptibilidad a los movimientos en masa

<table>
<thead>
<tr>
<th>Paisaje</th>
<th>Descripción</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altiplanicie</td>
<td>Altiplanicie allanada</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Altiplanicie ondulada</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Altiplanicie disectada</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Fondos de valle glacial y aluvial</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Fondos de valle aluvial altiplánico</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Llanura de valle aluvial</td>
<td>1</td>
</tr>
<tr>
<td>Montañoso</td>
<td>Vertientes de montaña allanada</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Vertientes de montaña empinada</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Vertientes de montaña disectada empinada a escarpada</td>
<td>5</td>
</tr>
<tr>
<td>Colinas</td>
<td>Colinas altas fuertemente disectadas</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Colinas altas moderadamente disectadas</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Colinas bajas fuertemente disectadas</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Colinas bajas moderadamente disectadas</td>
<td>2</td>
</tr>
<tr>
<td>Llanura amazónica</td>
<td>Terrazas altas disectadas</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Terrazas altas sin disección</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Terrazas intermedias disectadas</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Terrazas intermedias sin disección</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Terrazas bajas</td>
<td>1</td>
</tr>
<tr>
<td>Ríos y lagunas</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Las unidades de cobertura vegetal y uso de suelo en la región Cusco (IMA-2009) se han valorado analizando su relación con la generación de movimientos en masa. El cuadro 7.5 presenta los valores asignados a cada una de las unidades identificadas.

Cuadro 7.4
Valoración de clases de pendiente en relación al análisis de susceptibilidad a movimientos en masa

<table>
<thead>
<tr>
<th>Rango de pendientes</th>
<th>Clase</th>
<th>Comentario</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td><5°</td>
<td>Muy baja</td>
<td>Donde es muy poco probable que se generen peligros de remoción en masa.</td>
<td>1</td>
</tr>
<tr>
<td>5°-15°</td>
<td>Baja</td>
<td>Areas poco susceptibles a movimientos en masa.</td>
<td>2</td>
</tr>
<tr>
<td>15°-35°</td>
<td>Media</td>
<td>Conforman relieves moderados, inclinados, sus laderas son muy susceptibles a presentar movimientos en masa.</td>
<td>3</td>
</tr>
<tr>
<td>35°-45°</td>
<td>Alta</td>
<td>Conforman relieves susceptibles a movimientos en masa.</td>
<td>4</td>
</tr>
<tr>
<td>>45°</td>
<td>Muy alta</td>
<td>Corresponde a zonas de muy alta pendiente, altamente susceptibles a la generación de movimientos en masa de tipo desprendimiento, principalmente.</td>
<td>5</td>
</tr>
</tbody>
</table>

- **Cobertura vegetal y uso de suelo**

Las unidades de cobertura vegetal y uso de suelo en la región Cusco (IMA-2009) se han valorado analizando su relación con la generación de movimientos en masa. El cuadro 7.5 presenta los valores asignados a cada una de las unidades identificadas.

Cuadro 7.5
Valoración de las unidades de cobertura vegetal y uso de suelo, en relación al análisis de susceptibilidad a movimientos de masa.

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Áreas con intervención antrópica</td>
<td>1</td>
</tr>
<tr>
<td>Áreas desnudas o con escasa vegetación</td>
<td>3</td>
</tr>
<tr>
<td>Bosque húmedo de colinas</td>
<td>2</td>
</tr>
<tr>
<td>Bosque húmedo de terraza aluvial</td>
<td>1</td>
</tr>
<tr>
<td>Bosque húmedo de terraza inundable</td>
<td>1</td>
</tr>
<tr>
<td>Bosque húmedo de tierra firme</td>
<td>1</td>
</tr>
<tr>
<td>Bosque húmedo de valles interandinos</td>
<td>3</td>
</tr>
<tr>
<td>Bosque húmedo montañoso</td>
<td>3</td>
</tr>
<tr>
<td>Bosque seco de valles interandinos</td>
<td>3</td>
</tr>
<tr>
<td>Bosques macizos exóticos</td>
<td>2</td>
</tr>
<tr>
<td>Humedales andinos</td>
<td>0</td>
</tr>
<tr>
<td>Matorral arbóreo de valles interandinos</td>
<td>3</td>
</tr>
<tr>
<td>Matorral seco de valles interandinos</td>
<td>3</td>
</tr>
<tr>
<td>Matorral subhúmedo de valles interandinos</td>
<td>3</td>
</tr>
<tr>
<td>Nevados</td>
<td>3</td>
</tr>
<tr>
<td>Pacal puro</td>
<td>1</td>
</tr>
<tr>
<td>Pacal mixto</td>
<td>1</td>
</tr>
<tr>
<td>Pastizal y césped de puna</td>
<td>2</td>
</tr>
<tr>
<td>Sabana tipo pluvifolia</td>
<td>1</td>
</tr>
<tr>
<td>Ríos y lagunas</td>
<td>0</td>
</tr>
</tbody>
</table>

b) **Grados de susceptibilidad a los movimientos en masa**

Los grados de susceptibilidad se calculan a partir del análisis de los valores obtenidos de las interacciones entre los cuatro mapas factores (Figuras 7.1, 7.2 y 7.3): litología, geomorfología, pendiente y cobertura vegetal y uso de suelo, con ayuda de un Sistema de Información Geográfica (ArcGIS 9.3), empleando la siguiente ecuación:

$$SMM = \sum S_L (PVL) + \sum S_G (PVG) + \sum S_P (PVP) + \sum S_C (PVC)$$

En donde los valores indican:

- SMM: susceptibilidad a los movimientos en masa.
- ΣS_L: sumatoria de susceptibilidad de la variable Litología.
- ΣS_G: sumatoria de susceptibilidad de la variable Geomorfología.
- ΣS_P: sumatoria de susceptibilidad de la variable Pendiente.
- ΣS_C: sumatoria de susceptibilidad de la variable Cobertura Vegetal.

PVL: peso de la variable Litología.
PVG: peso de la variable Geomorfología.
PVP: peso de la variable Pendiente.
PVC: peso de la variable Cobertura Vegetal.

ΣN_p: número de parámetros.

Esta ecuación se usa para cada uno de los escenarios, obteniendo así los mapas de susceptibilidad a movimientos en masa (Figuras 7.4, 7.5 y 7.6), los cuales se clasifican en cinco grados de susceptibilidad, desde una susceptibilidad muy baja a una susceptibilidad muy alta.

En el Cuadro 7.6 se describen las características de las zonas de susceptibilidad diferenciadas.
Mapas factores (Raster) para el análisis de la susceptibilidad a movimientos en masa para los escenarios 1 y 2 (Tambomachay y Qoricocha): a) Factor Litología (Cuadro 7.2), b) Factor Geomorfología (Cuadro 7.3), c) Factor Pendiente (Cuadro 7.4), d) Factor Cobertura vegetal y uso de suelo (Cuadro 7.5).
Figura 7.2 Mapas factores (Raster) para el análisis de la susceptibilidad a movimientos en masa para los escenarios 3 y 4 (Pachatusan y Paruro): a) Factor Litología (Cuadro 7.2), b) Factor Geomorfología (Cuadro 7.3), c) Factor Pendiente (Cuadro 7.4), d) Factor Cobertura vegetal y uso de suelo (Cuadro 7.5).
Figura 7.3 Mapas factores (Raster) para el análisis de la susceptibilidad a movimientos en masa para el escenario 5 (Amaru): a) Factor Litología (Cuadro 7.2), b) Factor Geomorfología (Cuadro 7.3), c) Factor Pendiente (Cuadro 7.4), d) Factor Cobertura vegetal y uso de suelo (Cuadro 7.5).
Figura 7.4 Mapa de susceptibilidad a movimientos en masa para los escenarios 1 y 2 (Tambomachay y Qoricocha).
Figura 7.5: Mapa de susceptibilidad a movimientos en masa para los escenarios 3 y 4 (Pachatusan y Paruro).
Figura 7.6. Mapa de susceptibilidad a movimientos en masa para el escenario 5 (Amaru).
Cuadro 7.6
Grados de susceptibilidad a los movimientos en masa

<table>
<thead>
<tr>
<th>Grado</th>
<th>Características de susceptibilidad en los terrenos y distribución geográfica</th>
<th>Recomendaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy alta</td>
<td>Condiciones del terreno favorables para generar movimientos en masa. El substrato rocoso es de mala calidad, se encuentran diaclazadas, fracturadas y alteradas; estas son rocas intrusivas, metamórficas, sedimentarias, depósitos coluviales, etc. La morfología dominante es el relieve montañoso, donde las pendientes de laderas van de fuerte a muy fuerte, también incluye zonas de depósitos de antiguos deslizamientos. Las laderas se encuentran deforestadas con escasa cobertura vegetal. Estos eventos se concentran principalmente donde ocurrieron deslizamientos en el pasado o recientes reactivaciones de los antiguos al modificar sus taludes, ya sea como deslizamientos, derrumbes o movimientos complejos. Su distribución en los escenarios a evaluar se da a lo largo del valle del río Urubamba y en varios sectores del Valle Sagrado de los Incas; también en las zonas de Chaltabamba, Paucartambo, Rondocan, Acornayo, Acos, Pilpinto, Cusipata, Chacacupe y Sicuani.</td>
<td>Prohibir el desarrollo de infraestructura sin el conocimiento geológico detallado previo. Será necesario efectuar estudios geológico-geotécnicos de detalle para el desarrollo y construcción probable de infraestructura de cualquier tipo (carretera, puente, presa, hidroeléctrica) o habilitación urbana.</td>
</tr>
<tr>
<td>Alta</td>
<td>Presenta condiciones favorables del terreno a generar movimientos en masa; el substrato rocoso está compuesto en su mayoría de rocas sedimentarias. La pendiente de las laderas varía entre moderada a fuerte. Estos eventos se dan donde ocurrieron antiguos deslizamientos, presentando reactivaciones en la base de estos ya sea por deslizamientos o derrumbes. Su distribución en los escenarios a evaluar se da en las alturas de Cusipata, Pitumarca, Omacha, Quehue, Checca, Huancarani, Coquedpata, San Salvador, Ccorca, Pacaritambo, Limatambo y en las partes altas del Valle Sagrado de los Incas y la quebrada Cocho.</td>
<td>Restringir el desarrollo de infraestructura urbana, o de instalaciones destinadas a una alta concentración de población. En el caso de infraestructura vial, líneas de energía, actividad minera, etc., se deberán realizar estudios geotécnicos de detalle.</td>
</tr>
<tr>
<td>Media</td>
<td>Presenta algunas condiciones favorables para producir movimientos en masa. Incluye geoformas de relieve montañosas o colinadas. Las pendientes de los terrenos son moderadas. La distribución dentro de los escenarios a evaluar abarca un área considerable, ubicándose en las partes altas de Ccorca, Anta y Colquepata; también en Huancarani, Ccatca y en las partes altas (altoandinas) de Livitaca.</td>
<td>Permitir el desarrollo de infraestructura urbana e industrial, siempre y cuando se conozcan de forma detallada las propiedades de los terrenos, a fin de poder tomar decisiones respecto a la viabilidad del proyecto.</td>
</tr>
<tr>
<td>Baja</td>
<td>Las condiciones intrínsecas del terreno no son propensas a generar movimientos en masa. Coincide con zonas ligeramente inclinadas. Incluyen geoformas de terrazas altas, algunas zonas de abanicos de piedemonte y valles fluviales. Lítológicamente corresponden a depósitos fluviales, aluviales y eólicos, rocas intrusivas con poca meteorización. Podrían verse afectados por procesos que ocurren en sus franjas marginales como el caso de flujos (huaycos, avalanchas de rocas, avalanchas de detritos), o movimientos complejos (deslizamientos-flujos, derrumbe-flujos). Su distribución en los escenarios a evaluar se muestra en los sectores de Livitaca, Sangarara, Zurite, Huarocondo, Chinchero y los sectores fluvioGlaciares y morrénicos debajo del nevado Ausangate (Ocongate).</td>
<td>Se permite el desarrollo de infraestructura estratégica, urbana, industrial, siempre y cuando se incorporen las recomendaciones del estudio en sus diseños y para hacer viable cualquier proyecto; o adaptarse a las condiciones del terreno y poder reducir la probabilidad de sufrir pérdidas y daños.</td>
</tr>
</tbody>
</table>
Susceptibilidad a procesos de licuefacción de suelos y/o asentamientos

Para los escenarios identificados, se procede a realizar el respectivo análisis de susceptibilidad a procesos de licuefacción de suelos y/o asentamientos. Para este análisis se tienen que contar con los siguientes parámetros (factores condicionantes) que son: Litología e Hidrogeología.

El método usado en este análisis, también será el modelo heurístico de combinación de factores (Carrara et al., 1995) que ya se usó para el análisis de la susceptibilidad a movimientos en masa.

a) Mapas factores (variables)

Los factores utilizados para el análisis de la susceptibilidad a procesos de licuefacción de suelos y/o asentamientos son los mapas de unidades litológicas y el mapa de unidades hidrogeológicas (Cuadro 7.7).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Símbolo</th>
<th>Pesos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litología</td>
<td>L</td>
<td>0.55</td>
</tr>
<tr>
<td>Hidrogeología</td>
<td>H</td>
<td>0.45</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

Susceptibilidad a procesos de licuefacción de suelos y/o asentamientos

Al igual que en el análisis de la susceptibilidad a movimientos en masa, cada factor condicionante y sus unidades se analizan de manera independiente para asignar ponderaciones a las unidades de cada mapa, de acuerdo al grado de susceptibilidad a la ocurrencia de procesos de licuefacción de suelos y/o asentamientos. El rango de valores usados en las ponderaciones va de 1 a 5 para identificar con facilidad el grado de susceptibilidad de estos. A continuación, se presenta el análisis de cada factor condicionante:

- **Litología**

Esta variable es importante para el análisis de la susceptibilidad a procesos de licuefacción de suelos y/o asentamientos, se toma mayor importancia a los depósitos cuaternarios ya que influyen directamente en la generación de dichos procesos. Para ponderar las unidades litológicas se analizaron las propiedades geológicas y geotécnicas, su origen y tipo de material superficial y el ambiente donde se depositó. En el Cuadro 7.8 se muestra la relación de las unidades litológicas, el grado de susceptibilidad y los valores asignados.

- **Hidrogeología**

Esta variable es considerada también importante para el análisis de la susceptibilidad a procesos de licuefacción de suelos y/o asentamientos. En este estudio se toma como referencia la caracterización hidrogeológica, principalmente de los depósitos inconsolidados que se encuentran en la región Cusco (Cuadro 7.9); a partir del Cuadro 7.9 se ponderan tomando como referencia su relación con la susceptibilidad a generar procesos de licuefacción de suelos y/o asentamientos. En el Cuadro 7.10 se presenta dicha calificación.
Cuadro 7.8
Valoración de las unidades litológicas en relación al análisis de susceptibilidad a procesos de licuefacción de suelos y/o asentamientos

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Subunidad</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depósitos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inconsolidados</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-1</td>
<td>Aluviales</td>
<td>3</td>
</tr>
<tr>
<td>I-2</td>
<td>Fluviales</td>
<td>2</td>
</tr>
<tr>
<td>I-3</td>
<td>Lacustres</td>
<td>4</td>
</tr>
<tr>
<td>I-4</td>
<td>Bofedales</td>
<td>4</td>
</tr>
<tr>
<td>I-5</td>
<td>Fluviglaciares</td>
<td>2</td>
</tr>
<tr>
<td>I-6</td>
<td>Morrenas</td>
<td>1</td>
</tr>
<tr>
<td>I-7</td>
<td>Coluviales, eluviales</td>
<td>0</td>
</tr>
<tr>
<td>I-8</td>
<td>Travertinos</td>
<td>0</td>
</tr>
<tr>
<td>II-1</td>
<td>Dioritas y gabros</td>
<td>0</td>
</tr>
<tr>
<td>II-2</td>
<td>Granodioritas y granitos</td>
<td>0</td>
</tr>
<tr>
<td>II-3</td>
<td>Monzonitas</td>
<td>0</td>
</tr>
<tr>
<td>II-4</td>
<td>Tonalitas</td>
<td>0</td>
</tr>
<tr>
<td>Rocas intrusivas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III-1</td>
<td>Lava andesitas, dacitas y riolitas</td>
<td>0</td>
</tr>
<tr>
<td>III-2</td>
<td>Lava andesítico-basálticas y escorias</td>
<td>0</td>
</tr>
<tr>
<td>III-3</td>
<td>Lava, piroclastos y brechas</td>
<td>0</td>
</tr>
<tr>
<td>III-4</td>
<td>Tobas soldadas, ignimbritas</td>
<td>0</td>
</tr>
<tr>
<td>Rocas volcánicas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rocas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>volcanico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sedimentarias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV-1</td>
<td>Areniscas, conglomerados y volcánicos interestratificados y brechas</td>
<td>0</td>
</tr>
<tr>
<td>Rocas sedimentarias</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-1</td>
<td>Calizas y margas</td>
<td>0</td>
</tr>
<tr>
<td>V-2</td>
<td>Areniscas y lutitas</td>
<td>0</td>
</tr>
<tr>
<td>V-3</td>
<td>Lutitas, limolitas y areniscas</td>
<td>0</td>
</tr>
<tr>
<td>V-4</td>
<td>Areniscas, lutitas y conglomerados</td>
<td>0</td>
</tr>
<tr>
<td>Rocas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>metamórficas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI-1</td>
<td>Pizarras, filitas y esquistos</td>
<td>0</td>
</tr>
<tr>
<td>VI-2</td>
<td>Gneis, granulitas y cuarcitas</td>
<td>0</td>
</tr>
</tbody>
</table>

Cuadro 7.9
Caracterización hidrogeológica de los depósitos inconsolidados

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Subunidad</th>
<th>Caracterización hidrogeológica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depósitos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inconsolidados</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluviales</td>
<td>Acuífero poroso no consolidado</td>
<td></td>
</tr>
<tr>
<td>Fluviales</td>
<td>Acuífero poroso no consolidado</td>
<td></td>
</tr>
<tr>
<td>Lacustres</td>
<td>Acuífero poroso no consolidado</td>
<td></td>
</tr>
<tr>
<td>Bofedales</td>
<td>Acuífero poroso no consolidado</td>
<td></td>
</tr>
<tr>
<td>Fluviglaciares</td>
<td>Acuífero poroso no consolidado</td>
<td></td>
</tr>
<tr>
<td>Morrenas</td>
<td>Acuífero poroso no consolidado</td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 7.10
Valoración de las unidades geomorfológicas en relación al análisis de susceptibilidad a procesos de licuefacción de suelos y/o asentamientos

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Litología</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acuífero poroso no consolidado</td>
<td>Depósitos fluviales, bofedales, fluviglaciares, morrenas.</td>
<td>3</td>
</tr>
<tr>
<td>Acuífero poroso no consolidado</td>
<td>Depósitos aluviales y lacustres.</td>
<td>4</td>
</tr>
</tbody>
</table>
b) Grados de susceptibilidad a procesos de licuefacción de suelos y/o asentamientos

Los grados de susceptibilidad se calculan a partir del análisis de los valores obtenidos de las interacciones entre los mapas factores de litología e hidrogeología (Figuras 7.7, 7.8 y 7.9), con ayuda de un Sistema de Información Geográfica (ArcGIS 9.3), empleando la siguiente ecuación:

$$SMM = \sum S_L (PVL) + \sum S_H (PVH)$$

En donde los valores indican:

- SMM: susceptibilidad a los movimientos en masa.
- S_L: sumatoria de susceptibilidad de la variable Litología.
- S_H: sumatoria de susceptibilidad de la variable Hidrogeología.
- PVL: peso de la variable Litología.
- PVH: peso de la variable Hidrogeología.
- N_p: número de parámetros.

Esta ecuación se usa para cada uno de los escenarios, obteniendo así los mapas de susceptibilidad a procesos de licuefacción de suelos y/o asentamientos (Figuras 7.10, 7.11 y 7.12), los cuales se clasifican en cinco grados de susceptibilidad.

En el Cuadro 7.11 se describen las características de las cinco zonas de susceptibilidad diferenciadas.

Cuadro 7.11
Grados de susceptibilidad a procesos de licuefacción de suelos y/o asentamientos

<table>
<thead>
<tr>
<th>Grado</th>
<th>Características de susceptibilidad en los terrenos y distribución geográfica</th>
<th>Recomendaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy alta</td>
<td>Condiciones del terreno muy favorables para generar procesos de licuefacción de suelos y/o asentamientos. Estos vienen a ser depósitos lacustres. La morfología dominante vienen a ser los fondos de valles y las planicies que no presentan pendientes. Los eventos se concentran principalmente donde existen materiales inconsolidados y el nivel freático es casi superficial. Su distribución en los escenarios a evaluar se da en el valle del Cusco, la pampa de Anta y algunos sectores como Maras y Ccatca.</td>
<td>Prohibir el desarrollo de infraestructuras de gran envergadura sin el conocimiento geológico detallado previo. No realizar construcciones mayores a 3 pisos en el caso de viviendas, tomando en cuenta que estos suelos son malos e inconsolidados, se deberán tomar los estudios geológico-geotécnicos adecuados para construcciones mayores.</td>
</tr>
<tr>
<td>Alta</td>
<td>Presenta condiciones favorables para generar procesos de licuefacción de suelos y/o asentamientos; el substrato rocoso está compuesto en su mayoría de rocas sedimentarias. El terreno en estos lugares no presenta pendiente. Su distribución en los escenarios a evaluar se observa en el cañón del Urubamba, el Valle Sagrado de los Incas, Chinchero, el Valle Sur (Saylla y Oropesa), Andahuaylllas, Huaro, Quispicanchi, Quiquipana, Cusipata, Checacupe, Pitumarca, Combapata, Tinta, San Pedro, San Pablo, Sicuani, Marangani, Ocongate, Pomacanchi, Acopia, Canas y Langui.</td>
<td>Restringir el desarrollo de infraestructura urbana, o de instalaciones destinadas a una alta concentración de población.</td>
</tr>
<tr>
<td>Media</td>
<td>Presenta algunas condiciones favorables para generar procesos de licuefacción de suelos y/o asentamientos. Litológicamente corresponde a depósitos glaciares (morrenas y depósitos fluvio-glaciares). La distribución dentro de los escenarios a evaluar abarca los sectores de Pachatus, Ocongate (depósitos morrénicos y fluvio-glaciares producto del retroceso del nevado del Ausangate) y a los alrededores de Langui.</td>
<td>Permitir el desarrollo de infraestructura urbana e industrial, siempre y cuando se conozcan de forma detallada las propiedades de los terrenos para poder tomar decisiones respecto a la viabilidad del proyecto.</td>
</tr>
<tr>
<td>Baja</td>
<td>No se aprecian evidencias de estas zonas en los escenarios a evaluar.</td>
<td></td>
</tr>
<tr>
<td>Muy baja</td>
<td>Corresponde a terrenos con pendientes moderadas a muy fuertes; la morfología dominante está relacionada a zonas de montañas, quebradas, colinas, etc.; y litológicamente corresponde a rocas intrusivas, metamórficas, sedimentarias, etc. Ocupan gran parte de los escenarios a evaluar.</td>
<td>Son zonas que no son susceptibles a procesos de licuefacción de suelos y/o asentamientos, pero si pueden ser susceptibles a procesos de movimientos en masa.</td>
</tr>
</tbody>
</table>

Cuadro 7.11 Grados de susceptibilidad a procesos de licuefacción de suelos y/o asentamientos
Figura 7.7 Mapas factores (Raster) para el análisis de la susceptibilidad a procesos de licuefacción de suelos y/o asentamientos para los escenarios 1 y 2 (Tambomachay y Qoricocha): a) Factor Litología (Cuadro 7.7), b) Factor Hidrogeología (Cuadro 7.8).
Figura 7.8 Mapas factores (Raster) para el análisis de la susceptibilidad a procesos de licuefacción de suelos y/o asentamientos para los escenarios 3 y 4 (Pachatusan y Paruro): a) Factor Litología (Cuadro 7.7), b) Factor Hidrogeología (Cuadro 7.8).
Figura 7.9 Mapas factores (Raster) para el análisis de la susceptibilidad a procesos de licuefacción de suelos y/o asentamientos para el escenario 5 (Amaru): a) Factor Litología (Cuadro 7.7), b) Factor Hidrogeología (Cuadro 7.8).
Figura 7.10 Mapa de susceptibilidad a procesos de licuefacción de suelos y/o asentamientos para los escenarios 1 y 2 (Tambomachay y Qoricocha).
Figura 7.11. Mapa de susceptibilidad a procesos de licuefacción de suelos y/o asentamientos para los escenarios 3 y 4 (Pachatusan y Paruro).
Figura 7.12. Mapa de susceptibilidad a procesos de licuefacción de suelos y/o asentamientos para el escenario 5 (Aranu).
CARACTERIZACIÓN DE FALLAS ACTIVAS Y LA ACCELERACIÓN SÍSMICA

La base y la finalidad de la investigación se originan en los sismos en fallas de intraplaca, que son menos recurrentes en el tiempo, pero también han causado grandes destrucciones en el siglo pasado con un número de muertos cercano a los miles. Es así que los estudios de neotectónica y paleosismología, en esta parte del trabajo, se enfocan en el potencial sismogénico de una deformación cuaternaria.

La sismicidad y los procesos inducidos, constituyen una importante amenaza en todo el sector andino, ya que pueden ocasionar perjuicios notables en infraestructura y en vidas humanas. La caracterización y evaluación de la amenaza sísmica en una región se basa en el conocimiento espacio-temporal de la sismicidad que entregan los instrumentos o de la información histórica y de las estructuras consideradas como sismogénicas. Ello requiere información sobre la localización, recurrencia y magnitud de los terremotos registrados en la historia sísmica de una región y en el pasado prehistórico. Las redes sísmológicas y los registros históricos proveen información acerca de la ubicación y magnitud de los terremotos, sobre los cuales existen testimonios orales o escritos de diversa índole. Sin embargo, la evaluación de la amenaza sísmica de una región también debe tomar en cuenta y tratar de responder las siguientes interrogantes:

a) ¿La capacidad sismo-generadora de una región o estructura, se encuentra adecuadamente representada por el intervalo temporal cubierto por los catálogos de sismicidad histórica e instrumental, o pudieron haber ocurrido en épocas prehistóricas con crisis sísmicas mayores?.

b) ¿La ausencia actual de sismicidad o la sismicidad moderada de una región o sector, implican necesariamente una amenaza sísmica poco significativa?.

c) ¿Se puede estimar con un aceptable margen de seguridad el potencial sísmico de una región, utilizando solamente el catálogo sísmico?.

Para una mejor aproximación a las implicaciones de estas preguntas, debe considerarse que las fallas están sometidas a un «ciclo sísmico». El mismo define un orden de magnitud temporal durante el cual una estructura o sistema acumula energía de deformación elástica, que en casi todos los casos se libera en forma repentina y origina un terremoto. Dicho ciclo presenta una amplia variabilidad temporal, ya que en ambientes de bordes de placa o en fallas con importante tasa de movimiento (>10 mm/año), este periodo puede abarcar 50 a 500 años; mientras que en regiones de intraplaca o en estructuras con tasas de movimiento bajas (<0,1 mm/año), el mismo es generalmente mayor de 1,000 años. Este aspecto destaca que la ventana temporal provista por la sismicidad histórica e instrumental (no mayor de 500 años en América), es insuficiente para estimar el real potencial sismogénico y la amenaza asociada de la gran mayoría de las fuentes sismogénicas andinas.

Por lo tanto, es necesario estudiar las evidencias de crisis sísmicas que pudieron haber ocurrido en épocas anteriores al registro histórico, provistas por las huellas que los terremotos han dejado en el registro geológico.

En el contexto sismotectónico andino, se considera que las estructuras con antecedentes sísmicos durante el Cuaternario (<2.5 millones de años), son las que concentran mayores posibilidades de generar movimientos sísmicos futuros. Este intervalo, sin duda, comprende varias veces los periodos de recurrencia de las estructuras con potencial sismogénico. Consecuentemente, el conocimiento de las mismas es relevante para una correcta tipificación del potencial sísmico de una región.

Existe amplio consenso en la comunidad científica, sobre la base de datos empíricos, de que los terremotos de magnitud M>6.5 y profundidades menores de 30 kilómetros producen comúnmente deformaciones en la superficie topográfica (Slemmons, 1977; Wallace, 1981; Bonilla, 1988; Mc Calpin, 1996; Wells & Coppersmith, 1994; Yeats et al., 1997 y varios otros). De estas deformaciones resultan evidencias que pueden preservarse en la morfología del terreno y también en el arreglo y composición de los materiales aledaños a la zona de deformación.

El análisis de dichas evidencias mediante técnicas multidisciplinarias, incluyendo geología estructural, geomorfología, sedimentología y métodos de datación, constituyen el campo de estudio de la neotectónica y de la paleosismología (Wallace, 1981;1986; Yeats & Schwartz, 1990; Yeats & Prentice, 1996; Mc Calpin, 1996; Yeats et al., 1997; Meghraoui & Crone, 2001 y varios otros). Esta información permite estimar con precisión la variable de recurrencia y tamaño de eventos prehistóricos y, por lo tanto, permite reconstruir el registro sísmico prehistórico.

Caracterización de las fallas activas de la región Cusco

El estudio de las deformaciones cuaternarias aporta datos sobre las deformaciones prehistoricas de fallas consideradas sismogénicas y de los efectos inducidos por la sismicidad, los cuales son vitales para la caracterización de la amenaza sísmica. Ello complementa la información sísmológica y, en muchos casos, permite obtener mejores aproximaciones en el conocimiento del potencial sísmico regional. Puede evitar, asimismo, subestimaciones de la capacidad sismogeneradora derivadas del uso de información con corta penetración temporal.

En consecuencia, la compilación cartográfica y el inventario de las deformaciones cuaternarias y activas realizadas en la región del
Cusco, resulta, en consecuencia, una tarea ineludible para cualquier acción referente al ordenamiento territorial, estudios de microzonificación sísmica o cualquier iniciativa de conocimiento y mitigación de la amenaza sísmica.

Cálculo de magnitudes máximas posibles

En la actualidad existen métodos para calcular la magnitud máxima posible que una falla intraplaca puede generar (Wells & Coppersmith, 1994; Stirling et al., 2002), utilizando relaciones empíricas entre magnitud, momento, longitud de ruptura de la superficie, longitud de ruptura en subsuelo, ancho de la ruptura, área de ruptura, el desplazamiento máximo y promedio por evento.

Es así que, en el presente estudio, se generaron cinco escenarios a partir del cálculo de magnitudes máximas posibles que podrían generar las fallas activas de Tambomachay, Qoricocha, Pachatusan, Paruro y Amaru, utilizando las propuestas de Wells & Coppersmith (1994) y Stirling et al. (2002).

Los trabajos de campo permitieron recopilar información útil para aplicar las relaciones expuestas anteriormente, es así que de acuerdo a la longitud de ruptura, ruptura máxima vertical y, asumiendo que estas reactivaciones tuvieron hipocentros superficiales, se pudo calcular que las fallas de Tambomachay, Amaru, Pachatusan, Paruro y Qoricocha son capaces de generar sismos mayores a 6.1 (Mw) de magnitud (Figura 7.13).

Aceleración sísmica

En esta sección se presentan, en general, los fundamentos teóricos de la metodología y los resultados preliminares del estudio de amenaza sísmica en las regiones próximas a las fallas de Tambomachay, Qoricocha, Pachatusan, Paruro y Amaru en la región Cusco.

Para calcular los mapas de aceleración sísmica se han empleado las curvas de atenuación, que están expresadas en ecuaciones matemáticas, las cuales fueron ampliamente desarrolladas por diferentes autores en el mundo, con la finalidad de estudiar los efectos de los sísmos en zonas sísmicamente activas según catálogos locales y mundiales. En tal sentido, las curvas de atenuación representan la relación entre los efectos de un terremoto en un sitio con respecto a la magnitud del sismo y la distancia epicentral (García, 2006). Los efectos del terremoto son cuantificados por medio de los parámetros del movimiento del terreno. Estas relaciones se desarrollan mediante análisis estadísticos, realizados a un gran número de registros, obtenidos en regiones con diferentes características geológicas.

Se emplearon los algoritmos desarrollados en el proyecto Next Generation Attenuation (NGA) Models del grupo Pacific Earthquake Engineering Research Center (PEER), que, además de los factores característicos de un sísmo, como magnitud, distancia y mecanismo de falla, tienen en cuenta los efectos locales de sitio, en base al valor de la V_{S30}. El grupo PEER es un centro de investigaciones de la Universidad de California que fue fundado...
en 1997 a partir del programa de reducción de riesgo sísmico NEHRP (National Earthquake Hazard Research Program).
Especificamente, se empleó el modelo empírico desarrollado por Abrahamson & Silva, 2007.

a) Modelo de atenuación Abrahamson & Silva, 2007 (NGA)

Este es un modelo empírico del movimiento del terreno en la componente horizontal de los sísmos superficiales, producidos por fallas corticales (Abrahamson & Silva, 1997). Es aplicable para sismos con magnitudes (Mw) entre 5 y 8.5 que ocurran a una distancia epicentral menor a 200 kilómetros y períodos espectrales de entre 0 y 10 segundos (Abrahamson & Silva, 2008). En la ecuación intervienen diferentes parámetros como el tipo de suelo representado por el valor de la V_{S_{30}} y por la profundidad a la cual se encuentra la velocidad de onda de corte mayor a 1000 m/s, que en términos de ingeniería representa la profundidad del basamento rocoso, además de factores como el tipo de falla y la geometría de la falla.

A continuación, se presenta la ecuación general para el cálculo del movimiento medio del suelo desarrollado por Abrahamson & Silva (2008):

\[\ln(S_{u}(g)) = \sum \left(M, R_{rup}, V_{50}, V_{Lin}, V_{N}, A, S, Z, M, F, Z, R, Z, R, Z, R \right) \]

En donde los valores indican:

M: magnitud momento (Mw).
R_{rup}: distancia de ruptura (km).
R_{jb}: distancia Joyner-Boore (km).
R_{rup}: distancia horizontal en km desde el frente de la proyección del plano de ruptura.
Z_{rup}: profundidad al tope del plano de ruptura (km).
F_{WV}: indicador para una falla inversa.
F_{WN}: indicador de falla normal.
F_{W}: indicador para sitio que representa el comportamiento del suelo frente a un evento sísmico.
Lin: longitud del ancho de ruptura (km).

Para las funciones representadas por f_{i}, f_{4}, f_{5}, r_{i}, f_{6}, f_{10}, y R_{rup}, R_{ip} se definen de la siguiente forma:

- **Modelo base (f_{i})**: Es la ecuación base del modelo, y es la misma desarrollada por los autores en 1997 (Abrahamson & Silva, 1997), y se calcula a partir de los parámetros de la magnitud y la distancia epicentral.

- **Modelo para hangingwall (f_{4})**: Representa la influencia de la ubicación del punto estudiado respecto del lado de la línea de proyección de la falla, se considera un efecto mayor cuando se encuentra del lado de la pared colgante de la falla y un efecto menor cuando se encuentra del otro lado.

- **Modelo para respuesta del sitio (f_{5})**: Esta función es importante porque representa los valores de atenuación en función del tipo de suelo o roca, es decir, cómo se comporta el suelo frente a un evento sísmico, este comportamiento está representado por las variables V_{S_{30}}, V_{Lin}, los cuales se definen como las velocidades de la onda de corte en las capas superficiales del suelo.

- **Modelo para la profundidad del tope del plano de ruptura (f_{6}, f_{7})**: Se incluye este elemento porque estudio para la profundidad del suelo para distancias largas (>100 kilómetros) donde los catálogos sísmicos están incompletos sobre todo para registros de sismos de magnitudes bajas (M=4-5). La variable a partir de la cual se realiza el modelamiento es R_{rup} que se define como la distancia al plano de ruptura.

- **Modelo para la profundidad del suelo (f_{8})**: Para modelar el efecto que producen los diferentes espesores de cada suelo se incluye la variable Z_{rup} que significa la profundidad a la cual se encuentra un suelo más consistente con una velocidad de las ondas de corte de 1.0 km/s.

- **Parámetros de recorrido de la onda sísmica (R_{rup}, R_{ip}, R_{ip})**: Para el modelo empleado se requiere calcular parámetros que representen la propagación de la energía sísmica en función de la distancia recorrida por las ondas sísmicas desde la fuente del sismo hasta el sitio de interés. Es así que se emplean diferentes variables que dibujan la geometría de la falla y las distancias fundamentales respecto del punto de interés (Figura 7.14). Se definen estas variables como: R_{rup}, distancia más corta desde el plano de ruptura al punto de interés; R_{ip}, distancia Joyner-Boore, que es la distancia horizontal más corta desde los bordes de la proyección en superficie del plano de falla hasta el punto de interés,
cuando este punto se encuentra dentro de la proyección del plano de falla esta distancia es cero; R_x, distancia más corta desde la proyección de la línea de falla hasta el punto, se consideran distancias positivas si se encuentran en el lado de la pared colgante de la falla y se consideran distancias negativas para los puntos que se encuentran en el lado estable de la falla. Todas estas distancias varían sustancialmente en función de la ubicación del punto de interés por lo que es necesario emplear diferentes ecuaciones para calcularlas, por ello se desarrollaron scripts en Matlab para resolver cada una de estas distancias para las diferentes condiciones que se requieran.

![Figura 7.14 Representación gráfica de la geometría de la falla y las distancias que se emplean para calcular la dispersión de la energía en función del recorrido de las ondas sísmicas (modificado de Kaklamanos, 2010).](image)

b) Parámetros iniciales

Realizamos el cálculo de los mapas de aceleración sísmica en la región Cusco para sismos producidos por cinco fallas principales: Tambomachay, Qoricocha, Pachatusan, Paruro y Amaru. En tal sentido, se ha tratado de acopiar toda la información disponible para realizar los modelos correspondientes; sin embargo, por ser una región con escasa información sísmica, muchos de los parámetros fueron inferidos o tomados de manera análoga de otras regiones con sistemas de fallas similares en donde se aplicaron estudios similares.

A continuación, se presentan los parámetros más importantes usados en el modelamiento sísmico para calcular las aceleraciones sísmicas en la región Cusco:

- Catálogo sísmico

Este elemento viene a ser quizás el más crítico en los cálculos, ya que no se tiene un catálogo completo que describa de manera real la sismicidad de la zona de estudio; el principal problema radica en que los sismos son de carácter local y, al no haber una red sísmica con una buena cobertura azimutal, las localizaciones y magnitudes no son precisas.

Sin embargo, se han logrado recuperar los parámetros sismológicos de 33 eventos tanto del catálogo histórico (Huaco, 1986) como del instrumental (Tavera et al., 2007), aunque solo para la falla Tambomachay, que es la más importante por su cercanía a la ciudad de Cusco. Los datos comprenden sismos con magnitudes que van de 3 a 5 Mw. Además de ello se tienen evidencias, de acuerdo a estudios paleosismológicos (Cabrera, 1988 y Benavente et al., 2010), de sismos con magnitudes mayores a 6.5, todos superficiales (<20 kilómetros). Con estos datos se graficó el histograma de la sismicidad en el tiempo (Figura 6.15), donde se muestra la magnitud de los eventos en función del tiempo; si bien es cierto la sismicidad que se describe en el gráfico no es homogénea, esta podría definir una sismicidad periódica.
- Características de las fallas estudiadas

De las cinco fallas estudiadas (Tambomachay, Qoricocha, Pachatusan, Paruro y Amaru) solo el caso de la falla Tambomachay cuenta con información sísmica (ver ítem anterior), de manera que se puede definir bien la zona de la falla como fuente sísmica. Entonces, según el catálogo sísmico, la distribución de la sismicidad se define claramente a lo largo de la falla (Figura 7.16). Entonces, se define la fuente sismogénica, como una falla geológica del Holoceno con una longitud de aproximadamente 18 kilómetros, es una falla de tipo normal con buzamiento de 65° hacia el sur y se ha inferido una profundidad aproximada de 20 kilómetros por la ocurrencia de la sismicidad. Al igual que para la falla de Tambomachay se han inferido las características de las otras cinco fallas por estudios paleosísmicos y/o por analogía respecto de la falla Tambomachay, es así que se han definido las características expuestas en el Cuadro 7.12 para las cinco fallas en estudio.

Figura 7.15 Histograma con la ocurrencia de los sismos vs. la magnitud para la falla de Tambomachay.

Figura 7.16 Ubicación de la fuente sísmica en estudio, la falla Tambomachay en Cusco.
Con el catálogo sísmico para la falla Tambomachay, se evaluó el modelo de la sismicidad para la región de estudio, en principio se generó un gráfico con la distribución del número de eventos en escala logarítmica vs. la magnitud (Figura 7.17). En términos generales, la aproximación lineal de los datos mostrados en el gráfico debería satisfacer la ecuación:

$$\log N = a - bM$$

En tal caso, la sismicidad estaría descrita por el modelo Gutenberg-Richter (Gutenberg & Richter, 1944); sin embargo, para nuestro catálogo existen evidencias de grandes eventos con períodos de recurrencia mayores que modifican la tendencia al final de la recta (Figura 7.17), es así que la discusión respecto a la aproximación de la recta se centra en los últimos puntos del gráfico. Un argumento que explica esta tendencia es que durante el tiempo entre grandes terremotos a lo largo de un área de falla, o segmento de falla, es generalmente inactivo excepto por los sismos precursores, réplicas y sismicidad de baja energía, y este concepto se refiere comúnmente al modelo de sismicidad característico (Wesnousky, 1994).

Cuadro 7.12

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Tipo</th>
<th>Magnitud (Mw)</th>
<th>Profundidad (km)</th>
<th>Buzamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tambomachay</td>
<td>Normal</td>
<td>6.5</td>
<td>10</td>
<td>65 SW</td>
</tr>
<tr>
<td>Qoricocha</td>
<td>Normal</td>
<td>6.1</td>
<td>10</td>
<td>70 SW</td>
</tr>
<tr>
<td>Pachatusan</td>
<td>Normal</td>
<td>6.4</td>
<td>10</td>
<td>64 SW</td>
</tr>
<tr>
<td>Paruro</td>
<td>Normal</td>
<td>6.2</td>
<td>10</td>
<td>70 SW</td>
</tr>
<tr>
<td>Amaru</td>
<td>Normal</td>
<td>6.5</td>
<td>10</td>
<td>75 SW</td>
</tr>
</tbody>
</table>

Figura 7.17 Distribución del número de eventos versus la magnitud.
- Distribución de tipo de suelos
La ecuación de atenuación, que se empleó, utiliza un modelo para introducir el efecto que produce el tipo de suelo en la aceleración sísmica. La presencia de suelos poco cohesivos, extremadamente plásticos, saturados en agua o fuertemente alterados constituye la principal causa de importantes fenómenos de amplificación, resonancia e incluso licuefacción en el emplazamiento. Pese a los considerables avances realizados en la simulación y modelado teórico de la respuesta de sitio en las últimas décadas, la forma empírica de enfrentar la inclusión de dicho efecto en las ecuaciones de movimiento fuerte sigue en desarrollo. La razón principal es la falta de información geológica y geotécnica sobre los emplazamientos utilizados, así como la dificultad para incluir la diversidad de efectos posibles.

Se suele adoptar alguna de las clasificaciones de sitio vigentes hoy en día para asignar a cada emplazamiento utilizado una categoría o clase de las «n» posibles, por ello se tomó la clasificación propuesta por la Building Seismic Safety Council (BSSC) del Programa Nacional de Reducción de Peligro Sísmico del Gobierno de EE. UU (BSSC, 2004), esta clasificación propone 6 tipos de suelos que definen de manera cuantitativa el suelo en función de la velocidad de las ondas de corte (Cuadro 7.13).

Cuadro 7.13
Clasificación de suelo según la velocidad de las ondas de corte (BSSC, 2004)

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Descripción</th>
<th>Vs (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Roca dura</td>
<td>>1500</td>
</tr>
<tr>
<td>B</td>
<td>Roca</td>
<td>760-1500</td>
</tr>
<tr>
<td>C</td>
<td>Suelo denso / roca blanda</td>
<td>360-760</td>
</tr>
<tr>
<td>D</td>
<td>Suelo firme</td>
<td>180-360</td>
</tr>
<tr>
<td>E</td>
<td>Suelo blando</td>
<td><180</td>
</tr>
<tr>
<td>F</td>
<td>Suelo blando</td>
<td>Valor obtenido con evaluación específica</td>
</tr>
</tbody>
</table>

Los trabajos encontrados referentes al tipo de suelos en la zona de estudio son escasos o muy focalizados, en tal sentido emplearemos la carta geológica 1/100000 para identificar el tipo de suelo en función de la unidad geológica de cada sitio. Los depósitos de esta región son principalmente sedimentarios, los diferenciamos en función de sus edades; así, tenemos depósitos del Cenozoico o más jóvenes que vienen a ser rocas sedimentarias poco consolidadas o no consolidadas y, por el otro lado, tenemos los depósitos más antiguos que el Cenozoico, compuestos principalmente por rocas sedimentarias consolidadas; y, finalmente, los depósitos del Cuaternario que representan suelos muy sueltos, ubicados principalmente en las cuencas de los ríos y valles.

c) Resultados
El procesamiento se llevó a cabo usando scripts desarrollados íntegramente en el entorno Matlab; tanto para los cálculos usando las ecuaciones de atenuación NGA, así como para los cálculos de los parámetros de distancia. El procesamiento consiste en crear una grilla de puntos a cada 500 metros dentro de la región Cusco, cada punto contiene información del tipo de litología y las coordenadas, luego se calculan los parámetros de distancias para cada uno de estos puntos; posteriormente se calculan las aceleraciones para períodos de entre 0.1 y 5 segundos. Los resultados representan la aceleración máxima horizontal del suelo (PGA) en el punto estudiado, para un evento de magnitud M, que es la máxima encontrada o reportada para cada falla. Entonces, en función a los parámetros considerados en el cálculo, los valores de los resultados están sujetos a la ubicación espacial de los puntos respecto de la falla y al tipo de litología local.

En términos generales, los resultados calculados muestran un interesante comportamiento de los valores de máxima aceleración en las zonas circundantes a las fallas. Tomando en cuenta los rangos de aceleración sísmica de la Guía Metodológica: Evaluación del Riesgo por Fenómenos de Remoción en Masa (Ojeda et al., 2001), se reclasificaron los mapas productos en cinco rangos de aceleración (Cuadro 7.14) para las fallas de Tambomachay (Figura 7.18), Qoricocha (Figura 7.19), Pachatusan (Figura 7.20), Paruro (Figura 7.21) y Amaru (Figura 7.22); la morfología en cada uno de los escenarios delimita las zonas de mayor aceleración sísmica, estas son en áreas próximas a las fallas y en zonas donde la litología representa un factor amplificador del movimiento del suelo.
Las aceleraciones calculadas para cada escenario, tomando en cuenta las fallas, se observa que afectan de manera distinta a la ciudad del Cusco, siendo la falla de Tambomachay la más peligrosa para Cusco por su cercanía, mientras que las fallas Qoricocha y Pachatusan también la afectan pero en menor medida, la falla de Paruro afecta en menor grado a esta ciudad y la falla Amaru afecta, principalmente, a los poblados de San Pedro, San Pablo y alrededores.

Por otro lado, cabe resaltar que los cálculos hechos para cada una de las fallas geológicas, son un ensayo teórico de la aceleración media del suelo en la región del Cusco frente a un evento sísmico de máxima magnitud, de manera que se toman estos resultados como referencia, pudiéndose optimizar o ajustar las variables de entrada con estudios específicos como el tipo de suelos.

<table>
<thead>
<tr>
<th>Aceleración</th>
<th>Grado</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.1</td>
<td>Muy baja</td>
</tr>
<tr>
<td>0.1-0.21</td>
<td>Baja</td>
</tr>
<tr>
<td>0.21-0.25</td>
<td>Media</td>
</tr>
<tr>
<td>0.25-0.29</td>
<td>Alta</td>
</tr>
<tr>
<td>>0.29</td>
<td>Muy alta</td>
</tr>
</tbody>
</table>
Figura 7.18: Mapa de aceleración sísmica en términos de PGA expresados en g, para la falla Tambomachay (escenario 1).
Figura 7.19. Mapa de aceleración sísmica en términos de PGA expresados en g, para la falla Qoricocha (escenario 2).
Figura 7.20 Mapa de aceleración sísmica en términos de PGA expresados en g para la falla Pachatusan (escenario 3).
Figura 7.21 Mapa de aceleración sísmica en términos de PGA expresados en g, para la falla Paruro (escenario 4).
Figura 7.22 Mapa de aceleración sísmica en términos de PGA expresados en g para la falla Aman (escenario 5).
PELIGROSIDAD

El concepto principal en la evaluación de peligrosidad es el de factor de disparo, conocido también como factor detonante. Es aquel que, desde el exterior, induce hacia un comportamiento dinámico activo, partiendo de las condiciones intrínsecas (susceptibilidad). Estos factores externos que propician la inestabilidad de laderas y/o procesos de licuefacción de suelos y/o asentamientos pueden ser originados ya sea por lluvias intensas y prolongadas, sismos fuertes, actividad volcánica o también por la actividad humana.

Los mapas de peligrosidad se consideran usualmente de carácter temporal, pues están sujetos a las condiciones presentes en un determinado momento, ya que estas son cambiantes a través del tiempo. Por lo tanto, la evaluación de la peligrosidad es el proceso que permite determinar la probabilidad de ocurrencia y severidad de un evento en un tiempo dado y en un área determinada. Representa la ocurrencia estimada y ubicación geográfica de eventos probables, diferenciando las zonas de peligrosidad alta hasta muy baja (Zavala & Rosado, 2011).

Peligosidad por movimientos en masa

Para el análisis de la peligrosidad por movimientos en masa, se consideró evaluar como factores detonantes los sismos. Los terremotos son reconocidos como una de las mayores causas de movimientos en masa (Keefer, 1984). En relación a la magnitud del sismo, señala que ocurren caída de rocas, deslizamientos de rocas y rupturas, disparados con magnitudes de 4.0 MI, y avalanchas con magnitudes de 6.0 MI. Por otro lado, en función a la intensidad sísmica, diversos autores concluyen que la intensidad mínima a la que se generan caídas es VI; para deslizamientos, desprendimientos laterales y flujos VII; y la intensidad más baja para cualquier movimiento en masa es IV.

Los parámetros más usados son magnitud e intensidad de un sismo. Sin embargo, también es usada la aceleración sísmica. Para este último parámetro, Ojeda et al. (2001), en la *Guía Metodológica: Evaluación del Riesgo por Fenómenos de Remoción en Masa*, dividen los valores de aceleraciones en tres categorías de amenaza: 0.21 a 0.25 g (moderadamente alta); 0.25 a 0.29 (alta); y mayor a 0.29 (muy alta).

Para el análisis de peligrosidad en cada uno de los escenarios, se emplearon las aceleraciones sísmicas para una ventana de tiempo de 50 años, y un período de recurrencia de 475 años.

a) Grados de peligrosidad a los movimientos en masa

La obtención de los rangos para el mapa de peligrosidad a los movimientos en masa fueron calculados a partir de los valores obtenidos de las interacciones entre el mapa de susceptibilidad (Figuras 7.4, 7.5 y 7.6) y el mapa de isoaceleraciones sísmicas (Figuras 7.18, 7.19, 7.20, 7.21 y 7.22).

Este cálculo se realizó con ayuda de un Sistema de Información Geográfica (ArcGIS 9.3), empleando la siguiente ecuación:

PELIGROSIDAD (p) = SMM * DSIS

En donde los valores indican:
SMM: susceptibilidad a movimientos en masa
DSIS: detonante sísmico

Los rangos en forma aritmética obtenidos en relación a la peligrosidad son presentados en tres grados: baja (muy baja y baja), moderada (media) y alta (alta y muy alta). En las Figuras 7.23, 7.24, 7.25, 7.26 y 7.27 se presenta la distribución de grados de peligrosidad a movimientos en masa y en el Cuadro 7.15 se describen, además, las características de las zonas de peligrosidad diferenciadas en los cinco escenarios.
Cuadro 7.15
Grados de peligrosidad a movimientos en masa

<table>
<thead>
<tr>
<th>Grado</th>
<th>Características y distribución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy Alta.</td>
<td>En los escenarios 1, 2, 3, 4 y 5, los lugares que se encuentran próximos a los epicentros dependen de la magnitud, la distancia al epicentro y el tipo de material (litología), considerando también la pendiente para generar cualquier tipo de proceso por gravedad. En color rojo están marcados los sectores donde se producirían los diferentes procesos de movimientos en masa. Los sectores identificados vienen a ser los flancos del Valle Sagrado de los Incas, las montañas que se encuentran al sur de la ciudad del Cusco y alrededores; en las partes altas de Yaurisque, Pacaritambo, Paruro y Rondocan. En el escenario 5 los sectores identificados se encuentran en las partes altas de Combapata, Pampamarca, Tinta, San Pedro, San Pablo, Sicuani y Marangani.</td>
</tr>
<tr>
<td>Alta.</td>
<td>En los escenarios analizados, las áreas que abarcan los rangos altos dependen también de la distancia al epicentro, la litología y la pendiente; estos sectores están identificados en los mapas con el color anaranjado. Los lugares donde se observan los procesos de movimientos se encuentran en los flancos del Valle Sagrado de los Incas, hacia el sureste de Ccorca, Rondocan, las partes altas de Caicay, Huanocuite, Paruro, Pacaritambo y Huancarani. En el escenario 5 los lugares identificados se encuentran en los alrededores de Pitumarca, Quehue, las partes altas de Langui y al sur de Marangani.</td>
</tr>
<tr>
<td>Media.</td>
<td>Son zonas que presentan un rango moderado a generar procesos de movimientos en masa, este rango se encuentra identificado en los mapas con el color amarillo. Abarca principalmente las zonas de Ollantaytambo, las partes altas de Huarocondo y las partes altas al norte de Anta y Pucyura, en Chinchaypuijo, en las partes altas de la quebrada Cochochoc, Challabamba, Paucartambo, las partes altas de Huancarani, Huaro, Quispicanchi, Colcha y Paruro. En el escenario 5 que se encuentra hacia el sur, los sectores donde se generarían procesos de movimientos en masa serían Omacha, en las partes altas de Acomayo, en las partes altas de Cusipata, en los alrededores de Pomacanchi, en Checa y hacia el sur hasta la frontera con el departamento de Puno.</td>
</tr>
<tr>
<td>Baja.</td>
<td>Son zonas que no presentan el grado de peligrosidad a generar algún tipo de movimientos en masa, para estos rangos se toma en cuenta principalmente la distancia al epicentro, según los resultados los sectores que abarcan son los fondos o piso de los valles, los fondos de los ríos principales, las partes planas como las mesetas y altiplanicies.</td>
</tr>
<tr>
<td>Muy baja.</td>
<td>Son zonas con ningún tipo de peligrosidad, estas vienen a ser zonas sin peligrosidad a ningún tipo de movimiento en masa; abarcan zonas sin pendiente, principalmente son fondos de valle, mesetas o sectores que abarca el batolito de Machupicchu.</td>
</tr>
</tbody>
</table>
Figura 7.23 Mapa de peligrosidad por movimientos en masa para el escenario 1 (Tambo machay).
Figura 7.24: Mapa de peligrosidad por movimientos en masa para el escenario 2 (Qoricocha).
Figura 7.25 Mapa de peligrosidad por movimientos en masa para el escenario 3 (Pachatusan).
Figura 7.26 Mapa de peligrosidad por movimientos en masa para el escenario 4 (Paruro).
Figura 7.27 Mapa de peligrosidad por movimientos en masa para el escenario 5 (Amaru).
Peligrosidad por procesos de licuefacción de suelo y/o asentamientos

Para el análisis de la peligrosidad a procesos de licuefacción de suelos y/o asentamientos, se consideró también a los sismos como factores detonantes.

Sobre la relación entre los procesos de licuefacción de suelos y/o asentamientos y la magnitud de un sismo, señalan que estos se dan con magnitudes iguales o superiores a 5.5 Mw; si hablamos en función de la aceleración sísmica, estos se dan con aceleraciones superiores o iguales a 0.2 g, tomando en cuenta el nivel freático que se encuentra a poca profundidad con respecto a la superficie del terreno. (González de Vallejo et al., 2002)

Se emplearon, en cada escenario, las aceleraciones sísmicas para una ventana de tiempo de 50 años, y un período de recurrencia de 475 años, al igual que se hizo para el análisis de peligrosidad por movimientos en masa.

a) Grados de peligrosidad a los procesos de licuefacción de suelo y/o asentamientos

La obtención de los rangos para el Mapa de peligrosidad a procesos de licuefacción de suelos y/o asentamientos, fueron calculados a partir de los valores obtenidos de las interacciones entre el Mapa de susceptibilidad (Figuras 7.10, 7.11 y 7.12) y el Mapa de isoaceleraciones sísmicas (Figuras 7.18, 7.19, 7.20, 7.21 y 7.22).

Este cálculo se realizó con ayuda de un Sistema de Información Geográfica (ArcGIS 9.3) y empleando la siguiente ecuación:

\[
PELGROSIDAD (p) = SMM * DSIS
\]

En donde los valores indican:

SMM: susceptibilidad a movimientos en masa
DSIS: detonante sismicidad

Los rangos en forma aritmética obtenidos en relación a la peligrosidad son presentados en tres grados: baja, media y alta; como se observa en las Figuras 7.28, 7.29, 7.30, 7.31 y 7.32, que principalmente representan la distribución de la peligrosidad a procesos de licuefacción de suelos y/o asentamientos.

En el Cuadro 7.16 se describen las características de las zonas de peligrosidad diferenciadas en cada uno de los escenarios.

Cuadro 7.16
Grados de peligrosidad a procesos de licuefacción de suelos y/o asentamientos

<table>
<thead>
<tr>
<th>Grado</th>
<th>Características y distribución</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alta</td>
<td>Son zonas que presentan un alto grado de peligrosidad a generar procesos de licuefacción de suelos y/o asentamientos. Para estos rangos se toma en cuenta principalmente la distancia al epicentro, el tipo de litología (principalmente depósitos cuaternarios), la caracterización hidrogeológica, también se pueden tomar en cuenta los niveles piezométricos para determinar el nivel freático, estos en caso de estudios de microzonificación sísmica. Según los resultados que muestran los mapas, los sectores que presentan una peligrosidad alta a generar procesos de licuefacción de suelos y/o asentamientos son los fondos o piso de los valles, los fondos de los ríos principales, las partes planas como las mesetas y/o altiplanicies. Principalmente las zonas de alta peligrosidad vienen a ser el Valle del Cuzco y el Valle del Huatanay, al igual que el Valle Sagrado de los Incas, también se observa la pampa de Anta, los sectores de Poroy y Chinchero, también en Colcha. Hacia el sur, en el escenario 5, se observa a lo largo del río Vilcanota donde se encuentran emplazados los poblados de Marangani, Sicuani, San Pablo, San Pedro, Tinta, Combapata y los sectores de Acopia, Yanaocca y Langu.</td>
</tr>
<tr>
<td>Media</td>
<td>Son zonas que presentan un moderado grado a generar procesos de licuefacción de suelos y/o asentamientos. Estos están ligados también a depósitos cuaternarios pero dependen principalmente de la distancia al epicentro. Abarca los sectores de la pampa de Anta, Zurite, Huaracundo, el Valle Sagrado de los Incas y las partes altas o zonas de morrenas, también se observa en los sectores de Andahuaylllas, Huaru, Quispicanchi, Challabamba, Paucartambo y Cutca; en el escenario 4 se puede observar que el Valle del Cusco, el Valle Sur (Huatanay) y el Valle Sagrado de los Incas presentan esta peligrosidad media; y en el escenario 5 abarca los sectores de Cusipata, Sangarrara, Pitumarca, Livitaca, Quehue y las alturas y alrededores de la laguna de Sibinacochea.</td>
</tr>
<tr>
<td>Baja</td>
<td>Son zonas que presentan un bajo grado de peligrosidad a generar procesos de licuefacción de suelos y/o asentamientos, abarcan más del 50 % del área analizada en cada mapa resultante. Estas son zonas que presentan un tipo de litología muy distinta de los depósitos cuaternarios, además son sectores que presentan pendientes.</td>
</tr>
</tbody>
</table>
Figura 7.28 Mapa de peligrosidad por procesos de licuefacción de suelos y/o asentamientos para el escenario 1 (Tambomachay).
Figura 7.29: Mapa de peligrosidad por procesos de lixiviación de suelos y/o asentamientos para el escenario 2 (Orococcha).
Figura 7.30. Mapa de peligrosidad por procesos de licuefacción de suelos y/o asentamientos para el escenario 3 (Pachatuan).
Figura 7.31. Mapa de peligrosidad por procesos de licuefacción de suelos y/o asentamientos para el escenario 4 (Paruro).
Figura 7.32. Mapa de peligrosidad por procesos de licuefacción de suelos y/o asentamientos para el escenario 5 (Amaru).
CAPÍTULO VIII

GEODESIA

Muchas regiones de la superficie de la Tierra están sometidas a deformaciones locales, con desplazamientos (levantamientos, subsidencia, movimientos laterales, rotación, distorsión, dilatación) que afectan la elevación, la posición horizontal o ambas. Estos movimientos resultan de procesos derivados de la tectónica global, regional y local, dando lugar a diversos procesos geológicos que contribuyen a la configuración y/o modelamiento de relieves; así como a movimientos de masa, deslizamientos sísmicamente inducidos; actividad volcánica, entre otros.

El monitoreo geodésico consiste en implementar redes de estaciones monumentadas (puntos de observación) para detectar y medir deformaciones de la corteza terrestre. Las medidas se hacen en el campo por métodos geodésicos convencionales y por métodos satelitales. Se efectúan las mediciones de campo con una frecuencia determinada por el tipo de estudio que se está realizando. Estos datos proveen información fundamental sobre las condiciones geodinámicas de la zona de estudio.

Nosotros implementamos sistemas de monitoreo geodésico empleando el GPS, aplicando métodos de tipo estático y diferencial. A continuación, se presentan los trabajos que se realizan en la región Cusco tanto para el monitoreo del sistema de fallas de esta región, como para el caso del deslizamiento Cuyo Chico, en Pisac, ubicado al noreste de la ciudad del Cusco.

MÉTODO DE ANÁLISIS GEODINÁMICO CON GPS

Los receptores GPS son herramientas de navegación que calculan la posición de un punto determinado sobre el globo terrestre. Actualmente se cuentan con señales emitidas de dos constelaciones satelitales: la constelación Americana (NAVSTAR GPS) compuesta por 24 satélites y la constelación Rusa (GLONASS) compuesta de 21 satélites; las cuales giran alrededor de la Tierra a una altitud de 20 000 y 19 000 kilómetros, respectivamente. Los satélites están equipados con relojes atómicos, por lo tanto, son muy precisos y transmiten la hora y su posición por medio de radio enlace. Con la información recibida de cuatro satélites, se pueden calcular las posiciones en el espacio por triangulación. La incertidumbre en la determinación de las posiciones, se derivan de las influencias meteorológicas y estratosféricas, que varían por refracción de la trayectoria lineal de la señal, alargando ligeramente su tiempo de recorrido e induciendo a errores.

Para el seguimiento de las deformaciones de fallas geológicas activas son necesarios datos muy precisos. Para obtener medidas más exactas, se utiliza el método «GPS diferencial». Para ello, durante el procesamiento, además de los datos de las estaciones instaladas cerca de las fallas geológicas (Fotografía 8.1), se emplean datos de receptor GPS instalado sobre puntos de referencia conocidos, muy alejado del área de estudio, donde las deformaciones del suelo sean relativamente nulas respecto a las generadas por el sistema de fallas; por lo regular estas estaciones corresponden a las estaciones permanentes del IGS (International GPS Service for Geodynamics) en Sudamérica.

De esta forma se puede dar seguimiento a la evolución de los esfuerzos del sistema de fallas efectuando mediciones continuas. Para este caso, se miden las posiciones de los puntos de referencia del suelo, en intervalos de tiempo regulares o después de la ocurrencia de un sismo importante, el trabajo consiste en reocupar los puntos de control con la instalación del equipo. En la Fotografía 8.1 se muestra un ejemplo con uno de los hitos geodésicos de la región Cusco ocupado por un GPS.

El GPS es adecuado para el estudio de la deformación de un sistema de fallas porque proporciona medidas tridimensionales de la posición con exactitud en el orden de los milímetros o centímetros. Es independiente de las condiciones climáticas y opera las 24 horas del día. Se tiene buena visibilidad entre las estaciones de una red de GPS con los satélites. Las mediciones se pueden hacer en áreas pequeñas (a escala de un deslizamiento), hasta en áreas más grandes (sistemas de fallas). El GPS, por lo tanto, tiene muchas ventajas sobre las técnicas convencionales de tipo geodésicas.
El propósito del presente capítulo es obtener una aproximación del campo de esfuerzos en la región Cusco por efecto del sistema de fallas que se encuentran aquí, a partir de estudios de geodesía satelital.

Los trabajos realizados se basarán principalmente en observaciones GPS, las cuales se llevaron a cabo en 5 campañas de campo durante 4 años (2009-2012), de tal forma que este estudio nos permitirá también definir las zonas de mayor interés para densificar adecuadamente la red de monitoreo geodésico.

La red geodésica

La red geodésica implementada en la región del Cusco, para estudiar las fallas geológicas activas, consta de 19 estaciones geodésicas y 1 estación permanente del Instituto Geográfico Nacional (IGN) ubicada en la ciudad de Cusco (Figura 8.1). Los datos son de carácter periódico y provienen de mediciones con GPS. Las estaciones fueron implementadas progresivamente desde el año 2009. En una primera etapa se construyeron 9 estaciones con el objetivo de estudiar las fallas de Tambomachay, Qoricocha y Huarocondo (fallas próximas a la ciudad de Cusco), para esta red se han registrado datos de 5 campañas. Posteriormente, se implementaron 4 estaciones más, para evaluar el Sistema de Fallas de Ocongate, habiéndose registrado datos durante dos campañas. Finalmente, se implementaron dos estaciones para el monitoreo de la falla Amaru, ubicada en la provincia de Canchis, la cual cuenta con datos de una sola campaña. En función al número de campañas y el periodo de monitoreo realizado es que se ha procesado la data cuyos resultados se presentan en este trabajo. En total son 8 las estaciones (HUAR, HUAY, ANTA, MARK, CORA, QORI, PANT y C01) con la cantidad necesaria de datos para realizar el procesamiento respectivo.
Tabla 8.1
Descripción de los hitos geodésicos implementados en la región Cusco

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Código</th>
<th>Longitud</th>
<th>Latitud</th>
<th>Altitud (m.s.n.m.)</th>
<th>Año de construcción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qoricocha</td>
<td>QORI</td>
<td>-13.422398</td>
<td>-71.939802</td>
<td>4 198</td>
<td>2009</td>
</tr>
<tr>
<td>Mariko</td>
<td>MARK</td>
<td>-13.452522</td>
<td>-72.199281</td>
<td>3 376</td>
<td>2009</td>
</tr>
<tr>
<td>Pantapallana</td>
<td>PANT</td>
<td>-13.435449</td>
<td>-71.769199</td>
<td>4 359</td>
<td>2009</td>
</tr>
<tr>
<td>Cuyo Chico</td>
<td>CUYO</td>
<td>-13.413213</td>
<td>-71.835365</td>
<td>3 183</td>
<td>2009</td>
</tr>
<tr>
<td>Ccorao</td>
<td>CORA</td>
<td>-13.488853</td>
<td>-71.933674</td>
<td>3 866</td>
<td>2010</td>
</tr>
<tr>
<td>Izcuchaca</td>
<td>ANTA</td>
<td>-13.465557</td>
<td>-72.149775</td>
<td>3 468</td>
<td>2009</td>
</tr>
<tr>
<td>Codataque</td>
<td>COTA</td>
<td>-13.43142</td>
<td>-71.808625</td>
<td>3 927</td>
<td>2009</td>
</tr>
<tr>
<td>Huarcocondo</td>
<td>HUAR</td>
<td>-13.400699</td>
<td>-72.213408</td>
<td>3 486</td>
<td>2009</td>
</tr>
<tr>
<td>Pachatauan</td>
<td>PACH</td>
<td>-13.501111</td>
<td>-71.822972</td>
<td>4 313</td>
<td>2011</td>
</tr>
<tr>
<td>Upis</td>
<td>UPIS</td>
<td>-13.718472</td>
<td>-71.304222</td>
<td>4 286</td>
<td>2011</td>
</tr>
<tr>
<td>Chichomichina</td>
<td>CHIC</td>
<td>-13.648722</td>
<td>-71.251417</td>
<td>4 241</td>
<td>2011</td>
</tr>
<tr>
<td>IGN_Cusco_1</td>
<td>C01</td>
<td>-13.523617</td>
<td>-71.963656</td>
<td>3 411</td>
<td>2011</td>
</tr>
<tr>
<td>Yuncaypata</td>
<td>YUPT</td>
<td>-13.491215</td>
<td>-71.346822</td>
<td>3 728</td>
<td>2011</td>
</tr>
<tr>
<td>Chacan Chico</td>
<td>CHAC</td>
<td>-13.43155</td>
<td>-72.142885</td>
<td>3 481</td>
<td>2012</td>
</tr>
<tr>
<td>Pucacasa</td>
<td>PUCS</td>
<td>-13.685958</td>
<td>-71.49505</td>
<td>4 134</td>
<td>2012</td>
</tr>
<tr>
<td>San Pablo</td>
<td>SNPA</td>
<td>-14.202</td>
<td>-71.3149</td>
<td>3 537</td>
<td>2012</td>
</tr>
<tr>
<td>Ccomercocha</td>
<td>COMR</td>
<td>-14.15251</td>
<td>-71.28079</td>
<td>4 426</td>
<td>2012</td>
</tr>
</tbody>
</table>
Trabajo de campo
Se han realizado 5 campañas de campo para registrar datos de GPS, para ello se emplearon receptores GPS de doble frecuencia con registros de 12 horas como promedio. Los trabajos de campo consistieron en instalar los equipos GPS en bases previamente implementadas y de dos tipos de estructuras: la primera es una plancha de acero con un adaptador (perno) de acero inoxidable anclado en afloramiento de roca mediante concreto (Fotografía 8.2A) en donde se acopla directamente el GPS utilizando un adaptador con base nivelante (Fotografía 8.2B). El segundo tipo de hito implementado consiste en un pin de acero inoxidable anclado directamente en afloramiento rocoso soldado y sellado con pegamento epóxico (Fotografía 8.3A), la instalación del equipo GPS se realiza mediante un trípode topográfico (Fotografía 8.3B).

Fotografía 8.2 Hito geodésico tipo I. (A) Hito en construcción. (B) Ocupación del hito con el GPS Trimble R6.

Fotografía 8.3 Hito geodésico tipo II. (A) Hito en implementación. (B) Ocupación del hito con el GPS Trimble R6.
PROCESAMIENTO DE DATOS

Procesamos los datos del conjunto conformado por las estaciones GPS que cuentan con tres o más lecturas de datos en campo, mediante el uso del programa científico Bernese 5.0 (Dach & Frídez, 2007), desarrollado por la Universidad de Berna, este software utiliza el cálculo de las dobles diferencias como principal técnica para la obtención de soluciones GPS. Una de las principales características del programa Bernese es su estructura modular y que los formatos de los archivos usados corresponden a estándares del IGS, o bien permiten fácilmente su transformación desde estos.

El esquema de dicho software se divide en cuatro partes fundamentales: configuración general, transferencia y formato de datos, preprocesado y, por último, el procesado y ajuste.

La parte de configuración general consiste en la elección de los ficheros de configuración necesarios para el procesamiento de los datos; entre los que destacan, relación receptores-antenas, diferencias de centros de fase de las antenas utilizadas, errores conocidos en los distintos satélites y épocas, parámetros de rotación de la Tierra, constantes generales del sistema de referencia utilizado, etc. La transferencia de datos consta de la transformación de los diferentes tipos de datos de origen externo, como por ejemplo los registros de observaciones en archivos con formato según la marca del receptor GPS (en nuestro caso ficheros DAT y T01 de Trimble), así como los ficheros de las órbitas de los satélites. El preprocesado consiste en la preparación de los datos para poder efectuar el cálculo final de las dobles diferencias receptor-satélite por época. Finalmente, en el ajuste final de todas las soluciones se obtienen las coordenadas definitivas para cada una de las estaciones respecto de un marco de referencia, que en nuestro caso es el ITRF2005.

Los resultados obtenidos conforman un conjunto de valores (coordenadas) que pueden ser analizados en función del tiempo, a los cuales se les denomina series temporales. Una serie temporal x_i cada una registrada en un tiempo específico t de una magnitud x, cuyo valor depende del tiempo (Otero & Sevilla, 2002). En la Figura 7.2 se presentan los resultados de la variación temporal de las componentes Norte, Este y Vertical para la estación MARK.

![Gráfico de series temporales](image)

Figura 8.2 Variación temporal de la posición en las tres componentes de la estación MARK, se muestran resultados de cuatro campañás.
RESULTADOS: CAMPO DE VELOCIDADES GPS

La estimación del campo de velocidades permite conocer las características de la deformación actual de la corteza de la zona de estudio. Nosotros estimamos las velocidades respecto del marco de referencia ITRF2005, y generamos un mapa con el campo de velocidades residuales respecto del movimiento de la placa Sudamericana, según el modelo de velocidades para América del Sur y El Caribe denominado «VEMOS 2009» (Figura 7.3), propuesto por Drewes & Heidbach (2012), en el marco de diferentes programas geodésicos desarrollados en esta región del continente.

El mapa del campo de velocidades estimado en el presente trabajo se puede ver en la Figura 8.4, donde se muestran los vectores de velocidad de 8 estaciones para las que se ha logrado estimar la magnitud y orientación del desplazamiento anual en la componente horizontal. A partir de este primer análisis de datos proporcionados por la red GPS, se puede concluir que las estaciones muestran una incertidumbre media en las componentes horizontal y vertical de 5 mm/año y 19 mm/año, respectivamente (ver Tabla 8.2), las magnitudes presentan valores máximos de hasta 27 mm/año de velocidad de desplazamiento, siendo estas mayores que las estimadas por otros autores; ~10 mm/año (Kendrick et al., 2001; Norabuena et al., 1998; Angermann, 1999; DeMets et al., 1994).

Respecto a la orientación de los vectores del campo de velocidades para Sudamérica, este presenta un cambio en la dirección de los vectores indicando que esta zona, además de ser afectada por el proceso de convergencia, podría ser afectada por esfuerzos locales (Villegas, 2008); nuestros resultados reafirman esta hipótesis, si bien es cierto que la orientación de los vectores no presenta una alineación específica, esta variación puede ser interpretada como parte de esfuerzos locales. Se puede relacionar con los esfuerzos propios del sistema de fallas en combinación con los esfuerzos a nivel regional y estructura geológica que se emplazan a manera de controles estructurales, en función de la orientación variable que presentan los vectores de velocidad, como veremos en los siguientes ítems.

Por otro lado, de acuerdo a los resultados de este primer cálculo, se espera que series temporales más largas mejoren las estimaciones de las velocidades. Además, en los subsiguientes trabajos de gabinete se procederá al cálculo de las series temporales en el marco de referencia ITRF2008, vigente desde el 16 de abril del 2011 (http://itrf.ensg.fr/ITRF_solutions/2008/ITRF2008.php).

<table>
<thead>
<tr>
<th>Estación</th>
<th>Vx (m/año)</th>
<th>Vy (m/año)</th>
<th>Vz(m/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTA</td>
<td>-0.003 ± 0.004</td>
<td>-0.010 ± 0.004</td>
<td>-0.017 ± 0.015</td>
</tr>
<tr>
<td>HUAR</td>
<td>-0.011 ± 0.005</td>
<td>-0.011 ± 0.004</td>
<td>0.015 ± 0.020</td>
</tr>
<tr>
<td>CORA</td>
<td>-0.017 ± 0.006</td>
<td>0.010 ± 0.006</td>
<td>0.012 ± 0.014</td>
</tr>
<tr>
<td>PANT</td>
<td>0.011 ± 0.008</td>
<td>-0.011 ± 0.007</td>
<td>0.012 ± 0.026</td>
</tr>
<tr>
<td>HUAY</td>
<td>0.019 ± 0.008</td>
<td>-0.010 ± 0.007</td>
<td>-0.005 ± 0.027</td>
</tr>
<tr>
<td>MARK</td>
<td>0.018 ± 0.005</td>
<td>-0.011 ± 0.004</td>
<td>0.015 ± 0.017</td>
</tr>
<tr>
<td>QORI</td>
<td>0.025 ± 0.003</td>
<td>-0.011 ± 0.003</td>
<td>0.014 ± 0.009</td>
</tr>
<tr>
<td>C01_</td>
<td>0.004 ± 0.004</td>
<td>-0.018 ± 0.003</td>
<td>0.003 ± 0.010</td>
</tr>
</tbody>
</table>

Figura 8.4 Velocidades (vectores) estimadas para 8 estaciones geodésicas de monitoreo de las fallas geológicas en la región Cusco.
Modelización de la deformación horizontal

De acuerdo con el mapa de velocidades en cada una de las estaciones, planteamos un modelo de esfuerzos conjuntamente con la inclusión de fenómenos interactuantes; en tal sentido, la orientación errática de los vectores de velocidad en relación al movimiento continental (Figura 8.5) puede ser alineada con esfuerzos locales del sistema de fallas activo.

Una primera interpretación se podría plantear a partir de la historia geológica de la región, que corresponde a varios procesos tectónicos superpuestos, de los cuales los principales representan la actividad tectónica marcada por complejos sistemas de fallas, y por grandes unidades geológicas (Hindle & Kley, 2002). En tal sentido, el comportamiento de los esfuerzos locales podría estar influenciado por controles estructurales con direcciones aproximadas este-oeste (e.g., falla Zurite, entre otras) y fallas con direcciones noroeste-sureste (e.g., falla Cusco, Tambomachay, Yaurisque, Acomayo, entre otras).

En este trabajo, ponemos en evidencia la actividad tectónica de los últimos dos millones de años realizando estudios relacionados a la neotectónica (Capítulo III y IV) y actividad actual utilizando datos GPS.

Los vectores de velocidad calculados a partir de los datos GPS en las estaciones HUAR y MARK ubicadas en la parte norte del área de estudio, indican sentidos hacia el suroeste; esta orientación del vector está ligada a la actividad de la falla Zurite, justamente en el lugar donde los sistemas de fallas noroeste-sureste presentan una inflexión a una dirección este-oeste. En consecuencia, el vector nos indica que la falla Zurite presenta deformación asociada a movimientos de tipo sinestral con componente normal (Figura 7.5).

En relación a los vectores de velocidad ubicados en la zona próxima a la ciudad de Cusco, estos muestran también un sistema de fallas complejo conformado por desplazamientos horizontales de tipo transcurrente sinestral con componente vertical de tipo normal (Figura 8.5), como muestra la estación CORA y C01. Este movimiento de igual forma fue validado por trabajos realizados en campo (Fotografía 8.4).

En relación a la falla Qoricocha, se tiene información de una estación GPS (estación QORI), y el vector de velocidad indica que esta se trataría de un desplazamiento de tipo transcurrente dextral. Este dato es uno de los más interesantes, ya que tenemos registro histórico de reactivación de tipo normal en 1986. Principalmente lo que muestra esta base es acumulación de deformación, la que está representada por movimiento de tipo transcurrente. Esta deformación es coherente con la partición de esfuerzos ligada a la dirección de convergencia, por tal motivo pensamos que esta continuará hasta su posterior bloqueo y liberación de energía, que luego se traducirá en sismicidad.

Finalmente, para la estación PANT se podría definir como un desplazamiento correspondiente a una falla normal, sin embargo se requiere de más información para definir su desplazamiento horizontal en ambos lados de la falla.
La mayoría de las estaciones geodésicas presentan vectores de velocidad que indican la presencia de esfuerzos de fallas de tipo transcurrente, que son coherentes a la partición de esfuerzos regionales, a pesar de que la mayoría de fallas han sido catalogadas como fallas normales (Macharé et al., 2009). Los desplazamientos verticales son aparentes, varían de 2 a 100 metros; trabajos de campo recientes muestran que estos desplazamientos tienen componente transcurrente, sugiriendo un estilo de deformación transcurrente coherente con la convergencia de placas y con la partición de esfuerzos del área de estudio.

Los desplazamientos verticales de tipo normal de las fallas activas y cuaternarias en la región del Cusco son evidentes; por tal motivo, interpretamos la fase de transcurencia como una etapa de transición, donde existe acumulación de deformación y energía, para su posterior y consecuente ruptura superficial, generando de esta forma deformación en la superficie traducida en saltos o escarpes de fallas.

Este estilo de deformación es coherente con la deformación regional y, posiblemente, yace desde el Mioceno superior, tal como indican Jaimes & Romero (1996) en la cuenca sin-orogénica de Paruro que se ubica en la terminación noroeste del Altiplano en la región Cusco.

MONITOREO DEL DESLIZAMIENTO DE CUYO CHICO

El deslizamiento de Cuyo Chico constituye un peligro constante para los pobladores de la localidad de Pisaq. El objetivo principal del monitoreo del deslizamiento de Cuyo Chico consiste en determinar la velocidad del deslizamiento de esta zona, la variación respecto del tiempo y respecto del espacio.

Se denomina así por encontrarse en el poblado de Cuyo Chico, localizado a 2 kilómetros de Pisaq. El material movilizado se extiende por una longitud de más de 4.5 kilómetros y presenta una forma alargada y algo lobulada en el extremo distal (Figura 8.6A). El material que lo conforma es arcillo-limo-gravoso, color crema a grisáceo, se considera que este evento fue muy lento y progresivo. Los materiales comprometidos corresponden a las secuencias de cuarcitas, areniscas, limolitas, pizarras y lutitas de la formación Cabanillas, los cuales se presentan fracturados, por encontrarse en una zona de falla.

Según Carreño (2006), este deslizamiento corresponde a una clase rara, donde no existe plano de ruptura, sino más bien un plano de cabalgamiento de falla, es el que actúa como plano de deslizamiento. Las escarpas de los deslizamientos reactivados en el cuerpo del deslizamiento-fluo de Cuyo Chico oscilan entre los 20 y 90 metros de ancho (Figura 8.6B); producen asentamientos y pérdida de terrenos de cultivo, de la carretera asfaltada que da acceso a los restos arqueológicos de Pisaq, y que además comunica con la localidad de Paucartambo; también producen la desviación del cauce de la quebrada Chongo (Chaupihuayco) hacia su margen derecha; así como también podrían producir pérdida de postes de transmisión eléctrica y represar la quebrada.

Estaciones GPS para el monitoreo del deslizamiento

En el deslizamiento de Cuyo Chico se ha implementado una red de monitoreo de la deformación de la superficie por efectos del deslizamiento mediante GPS y GPS diferencial. De las 11 estaciones instaladas inicialmente (Figura 8.7), 3 de ellas (COTA, HUYK y PANT) se utilizan para evaluar la deformación por efectos de la falla geológica Cuyo Chico y, como referencia, para las correcciones diferenciales en los puntos de densificación dentro del deslizamiento; mientras que la estación CUYO se instaló en la zona más inestable del fenómeno para determinar la magnitud del desplazamiento por efecto del deslizamiento. Por otro lado, se implementaron 8 puntos de control a manera de densificación: DCG1, DCG2, DCG3, DCG4, DCG5, DCG6, DCG7 y DCG8, a lo largo de todo el deslizamiento, tal como se pueden ver en la Figura 8.7 y la Tabla 8.3. En estos puntos de control se emplea el GPS diferencial para evaluar la variación de la magnitud del deslizamiento en toda el área afectada.

Campañas de campo

A diferencia los hitos geodésicos construidos para monitorear las fallas, en el caso de la densificación de puntos para monitoreo con GPS diferencial en la zona del deslizamiento se emplearon pernos de expansión y pines para marcar los puntos en donde se instalasen los equipos GPS (Figura 8.8A), la instalación de los equipos es mediante trípodes (Figura 8.8B). Cada campaña de registro de datos necesariamente requiere de 2 o más equipos GPS: una base que se instala en la estación PANT, que se designó como referencia de estación para su estabilidad, y el otro equipo que ocupa las posiciones de los puntos de control por, al menos, una hora.

Por otro lado, la estación CUYO se instaló con la metodología de monitoreo de las fallas geológicas para evaluar el nivel de certidumbre con ambos métodos. Y es precisamente en la estación CUYO en la que mayor información se tiene, puesto que para esta se realizaron 4 campañas de registro de datos GPS, esto desde el año 2009; mientras que para las estaciones de GPS diferencial solo se cuenta con dos campañas de registro de datos, la primera de ellas se realizó empleando un equipo GPS de frecuencia simple lo que incrementa el error de los resultados, como lo veremos más adelante.
Figura 8.5 Interpretación del campo de velocidades en función de los esfuerzos locales por el movimiento de las fallas geológicas.
Figura 8.6 (A) Vista del deslizamiento-flujo de tierra de Cuyo Chico-Ampay. (B) Detalle de reactivación sobre la carretera, que afecta terrenos de cultivo

Tabla 8.3
Coordenadas y fecha de instalación de los puntos de control en la red de monitoreo del deslizamiento de Cuyo Chico. Las coordenadas están en datum WGS84

<table>
<thead>
<tr>
<th>Código</th>
<th>Longitud</th>
<th>Latitud</th>
<th>Z (m.s.n.m.)</th>
<th>Año de Instalación</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCG1</td>
<td>197114.79</td>
<td>8513220.67</td>
<td>4026</td>
<td>2011</td>
</tr>
<tr>
<td>DCG2</td>
<td>196574.48</td>
<td>8513512.43</td>
<td>3855</td>
<td>2011</td>
</tr>
<tr>
<td>DCG3</td>
<td>196226.56</td>
<td>8514286.49</td>
<td>3785</td>
<td>2011</td>
</tr>
<tr>
<td>DCG4</td>
<td>194882.59</td>
<td>8515137.07</td>
<td>3483</td>
<td>2011</td>
</tr>
<tr>
<td>DCG5</td>
<td>193086.12</td>
<td>8515751.04</td>
<td>3234</td>
<td>2011</td>
</tr>
<tr>
<td>DCG6</td>
<td>193063.61</td>
<td>8515467.53</td>
<td>3223</td>
<td>2011</td>
</tr>
<tr>
<td>DCG7</td>
<td>196241.41</td>
<td>8513315</td>
<td>3902</td>
<td>2012</td>
</tr>
<tr>
<td>DCG8</td>
<td>192744.60</td>
<td>8515570.44</td>
<td>3185</td>
<td>2012</td>
</tr>
</tbody>
</table>
Figura 8.7 Ubicación de las estaciones GPS para el monitoreo del deslizamiento de Cuyo Chico.

Figura 8.8 Puntos de control para la red de monitoreo del deslizamiento de Cuyo Chico. (A) Perno de expansión instalado en roca. (B) Ocupación de un punto de control con el GPS THALES Promark3.
Procesamiento de datos
Los datos registrados en la zona del deslizamiento de Cuyo Chico se procesaron con dos programas diferentes, primero se procesó la información de las estaciones provenientes de la red regional cercanas al deslizamiento: CUYO y PANT con el software Bernese 5.0; luego, tomando como estación base de referencia a la estación PANT, se procesaron los puntos de control con el método de GPS diferencial con línea de base corta (1-6 kilómetros) usando el software Trimble Business Center TBC (Trimble, 2008).

Los resultados más importantes del periodo de estudio presentado en este trabajo corresponden a la estación CUYO, ya que para esta estación se emplearon equipos GPS de doble frecuencia y largas sesiones para el registro de datos. Entonces en la estación CUYO se cuenta con datos de cuatro campañas de GPS que abarcan un espacio de tiempo de aproximadamente 4 años (2009-2012). Procesamos los datos empleando la metodología descrita anteriormente.

Resultados
Los resultados son muy claros para definir un desplazamiento con orientación suroeste. Sin embargo, la velocidad del desplazamiento no es constante y podría estar influenciado por factores externos como la lluvia. En la Figura 8.9 presentamos la evolución temporal del deslizamiento en las tres componentes.

Los datos del primer periodo han sido tomados entre los meses de noviembre del 2009 y junio de 2010 (7 meses), presentando un desplazamiento horizontal total de ~1.373 metros y un hundimiento de ~0.479 metros (Figura 8.9). Los datos del segundo periodo comprenden entre junio y octubre del año 2010 (4 meses), y determinan un desplazamiento horizontal de ~0.341 metros y un hundimiento de ~0.117 metros (Figura 8.9). Para la tercera campaña los datos fueron tomados entre los meses de octubre del 2010 y agosto de 2011 (10 meses), presentan un desplazamiento horizontal de ~1.410 metros y un hundimiento de ~0.219 metros; y, por último, la cuarta campaña corresponde al periodo comprendido entre agosto de 2011 y octubre de 2012 con un desplazamiento horizontal de ~0.584 metros y un hundimiento de ~0.219 metros (Figura 8.10).

Figura 8.9 Variación temporal de la posición de la estación CUYO en las tres componentes.
Sumando los desplazamientos producidos durante los 37 meses, tiempo en que se realizaron las cuatro campañas, se tiene que el desplazamiento horizontal total es de 3.717 metros con una orientación suroeste y el hundimiento total fue de 1.307 metros. Según las series temporales, para calcular la velocidad de desplazamiento, tenemos un movimiento de 1.2 metro/año (Figura 8.9) y según las tablas de Cruden & Varnes (1996) este estaría clasificado como un deslizamiento lento. Por otro lado, los resultados por períodos indican que el fenómeno se desaceleró ligeramente el último año.

Mientras que en la estación PANT, en comparación con la estación CUYO, el desplazamiento tiene una ligera dirección sureste (Figura 8.10). Para el caso de las estaciones para GPS diferencial, los vectores de desplazamiento tienen la misma o menor magnitud que las elipses de error, por lo que solo se presentan de manera referencial y no representarían la geodinámica del deslizamiento (Figura 8.10).
1. Se conocen evidencias instrumentales e históricas de actividad tectónica activa que generó sismos de magnitud elevada, produciendo daños cuantiosos concernientes a pérdidas de vidas e infraestructura. Por tales motivos, era necesario el inicio de trabajos acerca de la neotectónica y paleosismología de la región.

2. Para estos estudios utilizamos técnicas multidisciplinarias, incluyendo geología estructural, geomorfología, estratigrafía y sedimentología, técnicas que constituyen parte del campo de la neotectónica, del estudio de la geología de terremotos y de la paleosismología. Esta información nos permitió en primer lugar: a) determinar y reconstruir el registro sísmico pasado, b) proponer una nueva metodología para la evaluación de la peligrosidad a los movimientos en masa y licuefacción de suelos inducidos por sismos intracontinentales y, finalmente, c) contribuir al conocimiento de la evolución geodinámica reciente de los Andes peruanos.

3. Los trabajos realizados en sedimentos lacustres son escasos, a pesar de las ventajas para el estudio de la paleosismicidad. Muchos de los sedimentos lacustres, al encontrarse permanentemente bajo una lámina de agua, presentan susceptibilidad a la licuefacción. Esta característica hace que las estructuras de paleosismicidad («sismitas»), generadas en estos medios, se preserven. Es por ello que la cuenca lacustre cuaternaria del Cusco fue un área con potencial para realizar trabajos de paleosismología, y ser el punto de partida para iniciar con este tipo de estudios en el Perú; los mismos que permitirán ampliar la ventana de registros sísmicos de eventos mayores a 5 grados de magnitud, a través de la caracterización de los diferentes tipos de sismitas. En la cuenca Cusco identificamos 36 eventos en el registro estratigráfico, si bien es cierto que la recurrencia de estos sismos son períodos largos, podemos afirmar que estos fueron de magnitud igual o mayor a 6.5, a partir de las caracterizaciones de las estructuras. Actualmente venimos trabajando en el análisis de estos niveles deformados, mediante diversas técnicas de dataciones, con la finalidad de precisar el intervalo de recurrencia de sismos grandes.

4. En el presente trabajo reportamos un récord de estructuras cuaternarias y activas ubicadas entre las cordilleras Occidental, Oriental y el Altiplano. Son estructuras mayormente asociadas a movimientos de tipo normal de alta inclinación (>60°), con rupturas superficiales aparentes, producto del incremento en el esfuerzo litosférico vertical que es compatible con la partición de esfuerzos generado por la subducción. Los períodos de extensión son entonces una compensación o acomodamiento de la corteza superior en respuesta a la compresión regional. Las reactivaciones con movimientos inversos estarían ligadas a la disminución del ángulo de subducción de la placa oceánica, proceso que generaría mayor fricción, acoplamiento entre las placas de Nazca-Sudamericana y consecuente levantamiento de los Andes. De modo que la distribución espacial y la dirección de los rasgos tectónicos activos cuaternarios en el borde oriental de la cuenca altiplánica sugieren que esta región está sujeta a un régimen tectónico transcurrente-extensional, caracterizado por un esfuerzo horizontal máximo (σ₁) de dirección norte-sur, datos que son coherentes con los análisis de los datos GPS obtenidos durante 3 años. Entonces los datos corroboran la subsidencia actual del Altiplano con respecto de la cordillera Oriental, donde edades de enfriamiento de rocas (termocronología) y sismicidad cortical de tipo inversa indican exhumación.

5. La investigación de la actividad tectónica es, generalmente, a partir de datos superficiales, con los cuales se puede interpretar la geometría y la cinemática de las estructuras tectónicas. Aunque la traza del plano de falla a veces es fácilmente reconocida en el campo, su configuración estructural en subsuelo es inferida; más aún cuando los escarpes suelen estar mal conservados o tienen una expresión incompleta. Para ello, debemos recurrir a técnicas geofísicas, como la tomografía eléctrica, la cual ha demostrado tener éxito en la determinación de la geometría y en algunas características estructurales de la falla en las primeras decenas o cientos de metros por debajo de la superficie. Realizamos seis perfiles en cuatro zonas de fallas: en Cusco, Pachatusan, Matinga y Poroy, obteniendo la continuidad de la estructura a profundidad y llegando a diferenciar los contactos fallados y la deformación de los

CONCLUSIONES
depósitos cuaternarios. Entre los resultados más resaltantes se encuentran los hechos a través de la falla Cusco, donde con perfiles de 750 y 450 metros ponemos en evidencia la existencia y la continuidad de la falla que se emplaza por medio de la ciudad, lo cual constituye un peligro latente. De la misma manera, la falla Matinga se ubica adyacente al poblado del mismo nombre.

6. Los sismos intraplaca pueden producir una serie de efectos inducidos, que dan lugar a grandes deformaciones y rupturas del terreno, como son los fenómenos de movimientos en masa y los fenómenos de licuefacción de suelos. Dentro de los movimientos en masa inventariados en la región del Cusco, 86 fueron detonados probablemente por sismos, y 33 zonas son susceptibles a procesos de licuefacción de suelos.

7. Los estudios estructurales detallados de las fallas nos permitieron generar mapas de amenaza sísmica para movimientos en masa y procesos de licuefacción de suelos y/o asentamientos. Estos mapas se calcularon a partir de las interacciones entre los mapas de susceptibilidad y los mapas de iso-aceleraciones sísmicas deducidos de la magnitud máxima posible que una falla activa puede generar, para posteriormente elaborar los mapas de peligrosidad de movimientos en masa y procesos de licuefacción de suelos y/o asentamientos detonados por sísmos; estos análisis se efectuaron para las fallas activas de Tambomachay, Qoricocha, Pachatusan, Paruro y Amaru, delimitando áreas según el grado de peligrosidad alta, media y baja.

8. En la actualidad, en el mundo de la investigación, se deben utilizar además de métodos de geocronología, instrumentación que permita cuantificar la deformación. Es por ello que implementamos estaciones geodésicas locales y temporales adyacentes a fallas activas. Los resultados preliminares obtenidos del procesamiento de datos GPS de cinco campañas temporales realizadas en los últimos 4 años demuestran que hay una evidente actividad tectónica en esta región, y concuerda con estudios geológicos realizados y presentados en el reciente trabajo. En tal sentido, el campo de velocidades confirma que hay una clara deformación local en la región Cusco, con desplazamientos entre 9 hasta 27 mm/año en la componente horizontal, lo que será corroborado en las siguientes campañas de campo. La interpretación de esta primera aproximación de campo de velocidades indica que las fallas activas presentan un componente de desplazamiento transcurrente de tipos sinesial, principalmente, y dextral, con desplazamientos verticales de tipo normal.

9. Asimismo, los resultados en el estudio del monitoreo geodésico del deslizamiento de Cuyo Chico, provincia de Calca, indican que el movimiento horizontal, en un período de cuatro años, es de 3.7 metros en la parte distal del mismo, con una orientación E-O, constituyéndose así en un proceso geológico que podría causar daños en un futuro próximo a las localidades de Cuyo Chico, Cotataque y Ampay, ubicadas en el distrito de Pisac, provincia de Calca. Se recomienda continuar con el monitoreo del desplazamiento horizontal y vertical de las coordenadas de los hitos de la red periódicamente, con el uso de equipos GPS de doble frecuencia, y a su vez densificar la red de monitoreo geodésico que permita conocer mejor el proceso de los fenómenos geodinámicos de la región Cusco.

10. En consecuencia, la importancia de realizar estudios detallados de las deformaciones Plio-cuaternarias, fallas y pliegues (estudios neotectónicos), consideradas como estructuras sismogénicas y de los efectos inducidos por la sismicidad, son estudios vitales para la caracterización de la amenaza sísmica de la región y su posterior contribución como herramienta fundamental en los Planes de Ordenamiento Territorial (POT).
BIBLIOGRAFÍA

Benavente, C., Delgado, F. (en preparación) - Liquefaction features interpreted as seismites in the Pleistocene fluvio-lacustrine deposits of the Cusco Basin (South Peru).

Neotectónica y peligro sísmico en la región Cusco

Fazzito, S.; Rapalini, A.; Cortés, J. & Terrizzano, C. (2009) - Characterization of Quaternary faults by electric resistivity tomography in the Andean Precordillera of Western
Neotectónica y peligro sísmico en la región Cusco

Liu, J.G.; Mason, P.J.; Yu, E.; Wu, M.C.; Tang, C., et al. (2012) - GIS modelling of earthquake damage zones using...
satellite remote sensing and DEM data. Geomorphology, 139-140: 518-535.

Philip, H.; Rogozhin, E.; Cisternas, A.; Bousquet, J.C.; Borisov, B & Karakhanian, A. (1992) - The Armenian earthquake...

El volcán Ubinas se encuentra localizado en el departamento de Moquegua, a 60 km al este de la ciudad de Arequipa. Es considerado el más activo del Perú por sus 24 eventos volcánicos, registradas desde el siglo XVI hasta la actualidad. La recurrente actividad ha generado en ese lapso considerables daños en los poblados localizados alrededor del volcán, contaminando terrenos de cultivo y causando la muerte de algunas personas y un número no preciso de ganado, a consecuencia de epidemias desconocidas.

Los antecedentes mencionados no se tomaron en cuenta para instalar un permanente sistema de monitoreo volcánico, a fin de formular un plan de contingencia y preparación de la población. Ello se hizo evidentemente necesario cuando se presentó la crisis volcánica en los meses de marzo e inicios de abril de 2006. En dicha oportunidad –y pese a los antecedentes históricos– el volcán Ubinas no contaba con un sistema de monitoreo volcánico continuo. Además, los pobladores del valle de Ubinas, que suman aproximadamente 3500 personas, tenían poco o ningún conocimiento del fenómeno y sus peligros asociados. Asimismo, las autoridades no contaban con un plan de contingencia ni con experiencia para hacer frente a la crisis volcánica.

El 27 de marzo de 2006, el volcán Ubinas comenzó a emitir cenizas de manera leve, las que cayeron sobre la localidad de Querapi, que se encuentra a 4 km al sur del volcán y donde habitan 42 familias. El 1 de abril de 2006 se produjo la primera explosión y durante los días siguientes se incrementó de manera importante la actividad volcánica y las cenizas emitidas alcanzaron entre 1000 y 3500 m de altura sobre el cráter. Desde mayo hasta agosto de 2006, la actividad se mantuvo constante. Se produjeron repetidas caídas de cenizas, así como explosiones volcánicas violentas que arrojaron fragmentos de lava. A partir de septiembre de 2006, la actividad volcánica fue disminuyendo drásticamente, las explosiones volcánicas se hicieron más esporádicas y el volumen de cenizas emitidas fue mucho menor. Este tipo de actividad disminuyó en el 2007, y prácticamente cesó en el 2009.

Con el propósito de monitorear la actividad volcánica, se constituyó un Comité Científico - creado mediante resolución N.º3768-2006-INDECI/11.0- el mismo que estuvo integrado por el INGEMMET, el IGP y la UNSA. Las primeras caídas de cenizas registradas en el valle de Ubinas afectaron al poblado de Querapi. Por esta razón, en una primera fase y de manera inmediata (20 de abril), las autoridades realizaron la evacuación de este poblado al refugio de Anascapa. El 3 de junio de 2006, el Comité Científico emitió el Comunicado N.º 8, donde recomienda al Sistema Regional de Defensa Civil de Moquegua (SIREDECI-Moquegua) elevar el nivel de alerta al color «naranja», ante el incremento de la actividad volcánica. En base a las recomendaciones emitidas, el SIREDECI-Moquegua toma la decisión de implementar la evacuación preventiva de los pobladores de las localidades de Tonohaya, San Miguel, Huatahua, Ubinas y Escacha, hacia el refugio de Chacchagén. El proceso de evacuación se llevó a cabo en dos etapas: en la primera etapa se evacuó a los pobladores de Tonohaya, San Miguel y Huatahua, el 9 de junio de 2006; en una segunda etapa se evacuó a los pobladores de Ubinas y Escacha, el 10 y 11 de junio del mismo año. En total se evacuó a cerca de 1356 personas. Los refugiados permanecieron en el albergue de Chacchagén durante más de un año, luego del cual fueron retornando a sus lugares de origen de manera progresiva, ante la disminución de la actividad eruptiva. Un censo realizado por el Comité Regional de Defensa Civil de Moquegua (CRDC-Moquegua), en diciembre de 2006, arrojó que en total permanecían en el albergue cerca de 832 personas.

Para atender a los afectados por la crisis volcánica, se implementaron refugios en Anascapa y Chacchagén. El refugio de Chachagén albergó a más del 95% de la población evacuada. Durante una primera etapa en el albergue de Chacchagén se armaron 315 carpas, 137 módulos de vivienda, más de 40 letrinas (posos ciegos), un relleno sanitario y reservorios de agua. En una segunda etapa se construyeron el centro de salud, comedores, duchas, aulas, áreas de esparcimiento para niños, y se instalaron los sistemas de luz y telecomunicaciones. Los refugios fueron implementados considerando la Carta Humanitaria y las Normas Mínimas de respuesta en caso de desastre, considerados en el Proyecto Esfera. Por las características y servicios brindados en el refugio de Chacchagén, este es considerado uno de los mejor implementados en el mundo para atender crisis volcánicas.

Es importante destacar que la gestión de la crisis volcánica fue compleja y difícil, ya que la erupción causó pánico en los pobladores. Se tomaron medidas rápidas para evacuar a los habitantes y brindarles un espacio seguro y adecuado para su convivencia durante el tiempo de la crisis. Luego de la evacuación, se llevó a cabo un proceso de retorno progresivo de los residentes, una vez que se confirmó la disminución de la actividad volcánica. Las estructuras de refugio fueron diseñadas y construidas de manera que cumplieran con los estándares y reglamentos necesarios para garantizar la seguridad y comodidad de los refugiados. De esta manera, se logró brindarles un espacio temporal mientras se buscaba la solución a largo plazo para la situación de los habitantes del valle de Ubinas.
RELACIÓN DE MAPAS E ILUSTRACIONES

Mapas a escala 1: 500 000
Mapa Neotectónico de Cusco 2013

Figuras

Figura 1.1 Mapa de ubicación. La imagen satelital muestra coloraciones verdes que comprende la zona de selva y en tonalidades marrones las partes alto andinas constituidas por montañas de la Cordillera Occidental, Oriental y Altiplano.

Figura 2.1 Mapa geomorfológico de la región Cusco, modificado del Instituto de Manejo de Agua y Medio Ambiente, IMA-2009

Figura 3.1 Estructuras de escape de fluidos generados por procesos de licuefacción en ensayos de laboratorio: a) y b) antiformas angulares por la acumulación de fluidos, c) abombamiento de las capas infrayacentes por el colapso de un cono de arenas y la génesis de volcanes de arena y d) zona de escape de fluidos hacia la superficie. Modificado de Owen (1996) y Rodríguez-Pascua (1998).

Figura 3.2 Esquema evolutivo de un sistema inestable de dos capas: 1) Al que se ha aplicado una corriente de aguas ascendente a través del mismo. 2) Representa el momento en que se supera la velocidad mínima de fluidización de la capa inferior. 3) Comienza a acumularse agua en la interfase acuosa en antiformas angulares entre la capa estática y la fluidificada. 4) Génesis de volcanes de arena cuando se supera la resistencia del estrato superior y la capa estática. 5a) Génesis de pseudonódulos si la capa confinante no es cohesiva. 5b) Con una capa confinante cohesiva se producen volcanes de arena. Modificada de Nichols et al. (1994) y Rodríguez-Pascua (1998).

Figura 3.4 Representación esquemática de las fases de desarrollo de inyecciones en filón y volcanes de arena. Modificada de Amick et al., 1990.

Figura 3.5 Diferentes tipos de laminación convoluta. Modificada de Allen (1982).

Figura 3.6 Modelo evolutivo del desarrollo de la estratificación en convoluta, estructuras almohadilladas y estructuras en plato, a causa de un movimiento sísmico. Modificada de Cheel & Rust (1986).

Figura 3.7 Modelo evolutivo del desarrollo de la estratificación en convoluta, estructuras almohadilladas y estructuras en plato, a causa de un movimiento sísmico. Modificada de Cheel & Rust (1986).

Figura 3.8 Ilustración típica sobe la generación de pliegues y fallas inversas durante el slumping (Modificado de Alsop & Marco, 2011).

Figura 3.9 Sección esquemática de una fisura de origen sísmico en materiales lacustres cuaternarios al noreste de los Estados Unidos. Tomada de Thorson et al. (1986).

Figura 3.10 Mapa de ubicación de la cuenca cuaternaria del Cusco. Las letras A, B, C, D, E, F, G y H representan los puntos donde se levantaron las columnas estratigráficas.

Figura 3.11 Columna estratigráfica «A» de la formación San Sebastián, quebrada Tankarpata.

Figura 3.12 Volcán de arena ubicado en sedimentos lacustres de la formación San Sebastián. A la derecha se observa la interpretación de la estructura o sismsita, donde se pueden observar las estructuras de descarga o emisión bien conservadas.
Figura 3.13 Falla normal post-slump afectando depósitos lacustres y diatomitas de la formación San Sebastián. A la izquierda se observa la interpretación dando idea del desplazamiento vertical de tipo normal de la falla (0.60 metros).

Figura 3.15 Arriba: *slump* de 40 centímetros de espesor desarrollado principalmente en niveles finos de diatomita. Abajo: *slump* de 8 metros con pliegues asimétricos en depósitos lacustres de la formación San Sebastián.

Figura 3.16 Columna estratigráfica «C», sector Mamellón.

Figura 3.17 Arriba: Deformación de los depósitos de la secuencia I de la Formación San Sebastián. Abajo: Nivel de mezcla detonado por licuefacción.

Figura 3.18 Columna estratigráfica «D», quebrada Tenería.

Figura 3.19 Ejemplos de licuefacción, estructuras tipo *ball and pillow*.

Figura 3.20 Columna estratigráfica «E», sector Ladrillera.

Figura 3.21 Inyección de arena intruyendo sedimentos limoarcillosos.

Figura 3.22 Columna estratigráfica «F», sector Agua Buena.

Figura 3.24 Columna estratigráfica «H», ubicada a la altura del sexto paradero del distrito de San Sebastián.

Figura 3.25 Correlación de las columnas estratigráficas de la formación San Sebastián y de los slumps más representativos de la cuenca.

Figura 4.1 Escarpe de falla en materiales detríticos no consolidados: a) superficie original desplazada; b) y c) paleoescarpes con diferente grado de erosión, asociados a movimientos tempranos de la falla; d) escarpe de falla actual; e) cuña coluvial, n: ángulo de pendiente (disminuye con la edad). Tomado de Rodríguez-Pascua (1998).

Figura 4.2 Tipos de escarpes de falla de cabalgamiento producidos a lo largo de la falla Spitak durante el sismo de 1988, magnitud 6.9 Ms en Armenia: a) escarpe de cabalgamiento simple, b) escarpe de colapso de bloque colgante, c) colina de presión simple, d) colina de presión dextral, e) colina de presión de retrocabalgamiento, f) colina de presión de bajo ángulo, g) colinas de presión en escalón. Modificado de Philip et al. (1992).

Figura 4.3 Imagen satelital de la ciudad del Cusco (NASA). Se observa en la parte norte, bordeando la cuenca, la falla Tambomachay; ver flechas rojas.

Figura 4.4 Segmento oeste de la falla Tambomachay, donde se observa un escarpe principal rectilíneo y segmentos sinuosos secundarios afectando también depósitos aluviales y de morrenas.

Figura 4.5 Imagen satelital mostrando los escarpes de fallas de Chincheros (ver flechas rojas), los rectángulos azules representan la ubicación de las trincheras (Cabrera, 1988).

Figura 4.7 Escapes de las fallas Qoricocha y Chincheros: a) escarpe de falla del sector este de la falla Qoricocha, b) conexión de escarpes de falla en Qoricocha, c) escarpe principal y secundarios en la falla Chincheros.

Figura 4.8 Trincheras en la falla Qoricocha donde se pueden observar las cuñas coluviales y desplazamientos verticales de hasta un metro precedentes a la reactivación de 1986.

Figura 4.9 Sector norte de la falla Tamboray donde se observa el desplazamiento vertical y la variación lateral de los cursos de los ríos por efecto del movimiento de rumbo sinestral.

Figura 4.10 Sector sur de la falla Tamboray donde se observan depósitos aluviales afectados por la falla; asimismo, se puede observar el trazo de la falla de Tambomachay.

Figura 4.11 Mapa estructural del Sistema de Fallas Pachatusan ubicado al noreste de la ciudad del Cusco. Las líneas de colores muestran una cronología de rupturas co-sísmicas a partir del análisis morfo-estructural, por ejemplo, las fallas representadas por las líneas de color negro corresponden al trazo principal de la falla, donde se observaron la mayor...
acumulación de eventos sísmicos, facetas triangulares, morrenas desplazadas, lagunas de colapso, entre otras evidencia; las fallas representadas por líneas de color rojo son las rupturas superficiales más recientes.

Figura 4.12 Cartografiado al detalle de parte del segmento norte de la falla Amaru. Se observa la traza de falla afectando a distintas generaciones de morrenas y generando en ellas deslizamientos.

Figura 4.13 Cartografiado al detalle de parte del segmento central activo de la falla Amaru, donde se observan nueve familias de morrenas afectadas por la estructura.

Figura 4.14 El mapa muestra en líneas de color rojo la falla Amaru, las líneas negras son fallas cuaternarias y activas de la región Cusco (tomado de Benavente & Delgado, 2012). La figura del lado superior derecha es un zoom del sector central de la falla, muestra una propuesta de paleoesfuerzos para los últimos 5 millones de años hallado a partir del procesamiento de 350 datos de microtectónica.

Figura 4.15 Sección estructural a partir de datos estructurales de los afloramientos, en ella se hace una vista de detalle (rectángulos rojos) donde se muestra la disposición y ubicación de las fallas normales con buzamientos opuestos.

Figura 4.16 Escarpes de fallas adyacentes a la laguna HuajCacocha. Los escarpes ubicados en el sector sur afectan la morrena frontal con movimiento de tipo normal, haciendo colapsar parte de ella; mientras que los escarpes ubicados al norte de la laguna son más rectilíneos y afectan depósitos glaciares y aluviales provenientes del cerro Uñajori. Las flechas rojas indican los escarpes de falla.

Figura 4.17 Escarpes de falla afectando morrenas y depósitos aluviales al sur de la laguna HuajHuacocha (flechas rojas). Se puede apreciar la geometría de la falla de tipo sigmoide.

Figura 4.18 Las líneas rojas representan los segmentos de fallas más recientes, mientras que las flechas negras con contornos naranjas muestran el escarpe Plio-cuaternario. Al sureste de la figura la laguna Pomacanchi.

Figura 4.19 Segmento norte de la falla Zangarará mostrando escarpe principal rectilíneo y estructuras secundarias formando estructuras tipo Echelon.

Figura 4.20 Imagen satelital que muestra el segmento mayorcuaternario de la falla Zangarará, muestra un escarpe de 20 metros de altitud.

Figura 4.21 Morrenas en la zona de Langui-Layo deformadas por la actividad de la falla Langui Layo.

Figura 4.22 Escarpe de falla y facetas triangulares de la falla Chinchapujo adyacente al poblado de Queñaparo, las flechas señalan los escarpes de fallas conservados. Imagen de Google Earth.

Figura 4.23 Segmento norte de la falla Paruro donde se muestra la distribución de la deformación en estructura tipo cola de caballo o echelon. (Ver flechas).

Figura 4.24 Escarpes de falla de Acomayo afectando depósitos aluviales y del deslizamiento ubicados en el Cerro JatunOrjo.

Figura 4.25 Contacto fallado entre conglomerados Mio-pliocenos con depósitos aluviales y coluviales. A) Depósitos coluvialesflexurados por el movimiento de tipo inverso de la falla Paruro. B) Interpretación de la figura A detallando la cinemática y el alineamiento de los clastos. C) Plano de falla donde se muestra el contacto de los conglomerados del Mio-plioceno con depósitos coluviales. D) Estrías identificadas en el plano de falla.

Figura 4.26 Escarpes activos de la falla Coorca. Se puede observar su orientación este-oeste señalados por las flechas.

Figura 4.27 Escarpe de falla San Lorenzo, se pueden observar sangpods a lo largo de la traza de falla, producto de su actividad.

Figura 4.28 Detalle de los escarpes de falla en el cerro Marannioj. Imagen de Google Earth.

Figura 4.29 Escarpes paralelos de la falla Colquemarca. Imagen de Google Earth.

Figura 4.30 Las flechas de color rojo muestran escarpes de la falla san Juan. Imagen de Google Earth.

Figura 4.31 Escarpes de la falla paralelos que dieron origen a la formación de la laguna de Lacacota.

Figura 4.32 Morrenas desplazadas con movimiento de rumbo sinestral, acomodando este movimiento se tienen otras fallas secundarias.
Figura 4.33 Traza de la falla Chahuaytire, donde se observa que cruza depósitos cuaternarios y modifica la red o sistema de drenaje. El rectángulo en color negro es la ubicación de la fotografía anterior.

Figura 4.34 Escarpe de la falla Lamay, en la parte alta se observa la laguna Isillococha.

Figura 4.35 Valle glacial ubicado en la quebrada Qorpuhuyaya afectado por la falla de Machacancha.

Figura 4.36 Escarpes de fallas, subparalelos, en las alturas de la localidad de Lares.

Figura 4.37 Escarpes de fallas, bien conservados, frente a la localidad de Paucartambo. Se trata de fallas inversas con escarpes paralelos secundarios asociados a la propagación.

Figura 4.38 Distribución de la deformación en la margen derecha del río Mapacho, se puede observar un trazo principal y escarpes secundarios conectándose a este.

Figura 4.39 Escarpes de fallas asociados a deslizamientos en la margen derecha del río Mapacho.

Figura 4.40 Escarpe de falla ubicado al sur del poblado de Vilcabamba, donde es posible observar que afecta depósitos aluviales y fluvioglaciares (segmento este).

Figura 4.41 Escarpes de falla conservados en la parte alta del cerro Conoorcco, entre las localidades de Choquecancha y Colca.

Figura 4.42 Facetas triangulares de hasta 150 metros, a la derecha se pueden observar escarpes mejor conservados. La morfología de estos escarpes nos indica actividad reciente y acumulación de varias reactivaciones de la falla.

Figura 4.43 Mapa geológico estructural de la cuenca Camisea (Espurt et al., 2008).

Figura 4.44 Sección balanceada de la cuenca Camisea, del pongo de Mainique, hasta la cuenca Ucayali. (Tomado de Espurt et al., 2011).

Figura 4.45 Facetas triangulares asociadas a la falla Santa Rosa-Pichari y ubicadas en la margen derecha del río Apurímac.

Figura 4.46 Esfuerzos regionales deducidos del análisis microtectónico de fallas activas y cuaternarias en la región del Cusco.

Figura 4.47 Muestra rupturas co-sísmicas, configuración espacial y análisis microtectónico, indicando una evolución de la deformación tipo pull apart, coherente con el esfuerzo máximo horizontal generado por la subducción. El análisis microtectónico de las rupturas recientes son compatibles con los datos GPS. Los sismos corticales registrados por el Instituto Geofísico del Perú y el Servicio Geológico de los Estados Unidos se ubican a lo largo de estas estructuras, guardando una estrecha relación.

Figura 5.1 Ubicación de los perfiles de tomografía eléctrica.

Figura 5.2 Falla Pachatusan, configuración Dipolo-Dipolo. Arriba: Perfil de tomografía eléctrica donde se observan resistividades altas discontinuas o con aparente variación lateral y por debajo de los 20 metros de profundidad. Abajo: Interpretación del perfil geofísico con la información geológica de superficie, podemos ver que las discontinuidades del basamento (altas resistividades), están controladas por fallas que afectan cobertura cuaternaria.

Figura 5.3 Falla Cusco, sector sur, configuración Wenner. Arriba: Perfil de tomografía eléctrica donde se observan resistividades bajas entre los 0-240 metros, valores relacionados con los depósitos finos de la formación San Sebastián; asimismo, las resistividades altas entre los 240 y 680 metros corresponden a depósitos fluvioglaciares y la variación en el punto 720 metros está relacionada con la falla Cusco. Abajo: Interpretación del perfil geofísico con la información geológica de superficie, podemos ver las resistividades altas en el medio del perfil, están relacionadas con un paleocanal del valle del río Huatanay.

Figura 5.4 Falla Cusco, sector sur, configuración Dipolo-Dipolo. Arriba: Perfil de tomografía eléctrica donde se observa una variación lateral de resistividades a partir de los 240 metros, está relacionada con la presencia de la falla. Abajo: Interpretación del perfil geofísico con la información geológica de superficie, podemos ver las dos fallas de propagación de tipo inverso. La estructura tiene un buzoamiento hacia el sur.

Figura 5.5 Falla Cusco, sector norte, configuración Wenner. Arriba: Perfil de tomografía eléctrica donde se observa una variación lateral de resistividades relacionada con la presencia de la falla. Abajo: Interpretación del perfil geofísico con la información geológica de superficie, podemos ver la falla con buzoamiento hacia el sur, indicando el límite o el contacto fallado de la formación Maras con los depósitos cuaternarios.
Figura 5.6 Falla Cusco, sector norte, configuración Dipolo-Dipolo. Arriba: Perfil de tomografía eléctrica donde se observa una cobertura de resistividad baja asociada a los depósitos cuaternarios y estas muestran anomalías o cambios bruscos relacionados con las fallas. Abajo: Interpretación del perfil geofísico con la información geológica de superficie, podemos ver las fallas con buzones opuestos y formando estructuras tipo graben.

Figura 5.7 Falla Matinga, configuración Dipolo-Dipolo. Arriba: Perfil de tomografía eléctrica donde se observan resistividades altas discontinuas o con aparente variación lateral y por debajo de los 20 metros de profundidad. Abajo: Interpretación del perfil geofísico con la información geológica de superficie, podemos observar que los límites de las discontinuidades de resistividad coinciden con las fallas observadas en la superficie. Asimismo, vemos que la falla normal tiene buzamiento subvertical.

Figura 6.1 Deslizamiento de Accos: a) sin interpretación y b) con interpretación. En línea punteada se muestra la corona del antiguo deslizamiento, la línea negra viene a ser una falla precuaternaria y las líneas rojas son segmentos de falla activos, también se observan los poblados ubicados en la parte media y baja del deslizamiento.

Figura 6.2 Deslizamiento de Colcha: a) sin interpretación y b) con interpretación. En línea punteada se muestra la corona del deslizamiento, las líneas rojas representan segmentos de falla activas, también se observa el poblado emplazado en la parte media del deslizamiento, que podría ser afectado por la reactivación de una de las estructuras.

Figura 6.3 Inducción de intrusiones arenosas por licuefacción: a) situación original del depósito, con sus características sedimentarias; b) a partir de un evento disparador, se induce la licuefacción, y el consecuente aumento de la presión de fluidos; c) el sedimento licuefactado se redeposita, ocupando las fracturas extensivas generadas (Modificado de Allen, 1982 y Obermeier, 1998).

Figura 6.4 Fases de desgregación de partículas hasta la licuefacción.

Figura 6.5 Mapas factores (Raster) para el análisis de la susceptibilidad a movimientos en masa para los escenarios 1 y 2 (Tambomachay y Qoricocha): a) Factor Litología (Cuadro 7.2), b) Factor Geomorfología (Cuadro 7.3), c) Factor Pendiente (Cuadro 7.4), d) Factor Cobertura vegetal y uso de suelo (Cuadro 7.5).

Figura 6.6 Mapas factores (Raster) para el análisis de la susceptibilidad a movimientos en masa para los escenarios 3 y 4 (Pachatusan y Paruro): a) Factor Litología (Cuadro 7.2), b) Factor Geomorfología (Cuadro 7.3), c) Factor Pendiente (Cuadro 7.4), d) Factor Cobertura vegetal y uso de suelo (Cuadro 7.5).

Figura 6.7 Mapas factores (Raster) para el análisis de la susceptibilidad a movimientos en masa para el escenario 5 (Amaru): a) Factor Litología (Cuadro 7.2), b) Factor Geomorfología (Cuadro 7.3), c) Factor Pendiente (Cuadro 7.4), d) Factor Cobertura vegetal y uso de suelo (Cuadro 7.5).

Figura 6.8 Mapas de susceptibilidad a movimientos en masa para los escenarios 1 y 2 (Tambomachay y Qoricocha).

Figura 6.9 Mapas de susceptibilidad a movimientos en masa para los escenarios 3 y 4 (Pachatusan y Paruro).

Figura 6.10 Mapas de susceptibilidad a movimientos en masa para el escenario 5 (Amaru).

Figura 6.11 Mapas factores (Raster) para el análisis de la susceptibilidad a procesos de licuefacción de suelos y/o asentamientos para los escenarios 1 y 2 (Tambomachay y Qoricocha): a) Factor Litología (Cuadro 7.7), b) Factor Hidrogeología (Cuadro 7.8).

Figura 6.12 Mapas factores (Raster) para el análisis de la susceptibilidad a procesos de licuefacción de suelos y/o asentamientos para los escenarios 3 y 4 (Pachatusan y Paruro): a) Factor Litología (Cuadro 7.7), b) Factor Hidrogeología (Cuadro 7.8).

Figura 6.13 Mapas factores (Raster) para el análisis de la susceptibilidad a procesos de licuefacción de suelos y/o asentamientos para el escenario 5 (Amaru): a) Factor Litología (Cuadro 7.7), b) Factor Hidrogeología (Cuadro 7.8).

Figura 6.14 Mapas de susceptibilidad a procesos de licuefacción de suelos y/o asentamientos para los escenarios 1 y 2 (Tambomachay y Qoricocha).

Figura 6.15 Mapas de susceptibilidad a procesos de licuefacción de suelos y/o asentamientos para los escenarios 3 y 4 (Pachatusan y Paruro).
Figura 7.12 Mapa de susceptibilidad a procesos de licuefacción de suelos y/o asentamientos para el escenario 5 (Amaru).

Figura 7.13 Magnitudes (Mw) máximas posibles halladas a partir de relaciones empíricas propuestas por Wells & Coppersmith (1994) y Stirling et al. (2002), para las fallas Tambomachay, Amaru, Pachatusan, Paruro y Qoricocha. En el eje (X) se muestra la longitud de la traza de falla que podría reactivarse.

Figura 7.14 Representación gráfica de la geometría de la falla y las distancias que se emplean para calcular la dispersión de la energía en función del recorrido de las ondas sísmicas (modificado de Kaklamanos, 2010).

Figura 7.15 Histograma con la ocurrencia de los sismos vs. la magnitud para la falla de Tambomachay.

Figura 7.16 Ubicación de la fuente sísmica en estudio, la falla Tambomachay en Cusco.

Figura 7.17 Distribución del número de eventos versus la magnitud.

Figura 7.18 Mapa de aceleración sísmica en términos de PGA expresados en g, para la falla Tambomachay (escenario 1).

Figura 7.19 Mapa de aceleración sísmica en términos de PGA expresados en g, para la falla Qoricocha (escenario 2).

Figura 7.20 Mapa de aceleración sísmica en términos de PGA expresados en g, para la falla Pachatusan (escenario 3).

Figura 7.21 Mapa de aceleración sísmica en términos de PGA expresados en g, para la falla Paruro (escenario 4).

Figura 7.22 Mapa de aceleración sísmica en términos de PGA expresados en g, para la falla Amaru (escenario 5).

Figura 7.23 Mapa de peligrosidad por movimientos en masa para el escenario 1 (Tambomachay).

Figura 7.24 Mapa de peligrosidad por movimientos en masa para el escenario 2 (Qoricocha).

Figura 7.25 Mapa de peligrosidad por movimientos en masa para el escenario 3 (Pachatusan).

Figura 7.26 Mapa de peligrosidad por movimientos en masa para el escenario 4 (Paruro).

Figura 7.27 Mapa de peligrosidad por movimientos en masa para el escenario 5 (Amaru).

Figura 7.28 Mapa de peligrosidad por procesos de licuefacción de suelos y/o asentamientos para el escenario 1 (Tambomachay).

Figura 7.29 Mapa de peligrosidad por procesos de licuefacción de suelos y/o asentamientos para el escenario 2 (Qoricocha).

Figura 7.30 Mapa de peligrosidad por procesos de licuefacción de suelos y/o asentamientos para el escenario 3 (Pachatusan).

Figura 7.31 Mapa de peligrosidad por procesos de licuefacción de suelos y/o asentamientos para el escenario 4 (Paruro).

Figura 7.32 Mapa de peligrosidad por procesos de licuefacción de suelos y/o asentamientos para el escenario 5 (Amaru).

Figura 8.1 Ubicación de las estaciones GPS instaladas para monitorear las fallas activas en la región del Cusco.

Figura 8.2 Variación temporal de la posición en las tres componentes de la estación MARK, se muestran resultados de cuatro campañas.

Figura 8.4 Velocidades (vectores) estimadas para 8 estaciones geodésicas de monitoreo de las fallas geológicas en la región Cusco

Figura 8.5 Interpretación del campo de velocidades en función de los esfuerzos locales por el movimiento de las fallas geológicas.

Figura 8.6 (A) Vista del deslizamiento-flujo de tierra de Cuyo Chico-Ampay. (B) Detalle de reactivación sobre la carretera, que afecta terrenos de cultivo.

Figura 8.7 Ubicación de las estaciones GPS para el monitoreo del deslizamiento de Cuyo Chico.

Figura 8.8 Puntos de control para la red de monitoreo del deslizamiento de Cuyo Chico. (A) Perno de expansión instalado en roca. (B) Ocupación de un punto de control con el GPS THALES Promark3.

Figura 8.9 Variación temporal de la posición de la estación CUYO en las tres componentes.
Figura 8.10 Vectores de desplazamiento en las estaciones geodésicas en donde se representan el desplazamiento horizontal y vertical por campaña. La estación más importante es la estación CUYO para la cual se muestran los resultados de 3 campañas.

Fotografía 3.1 Cuenca cuaternaria del Cusco, donde actualmente se desarrolla la ciudad del Cusco.

Fotografía 4.1 Las flechas de color rojo señalan el escarpe principal de la falla Zurite-Huarocondo, donde se aprecia un desnivel de 100 metros de la superficie y escarpes con desniveles más pequeños (6 metros) producto de la migración del plano de falla, fotografía tomada hacia el noreste.

Fotografía 4.2 Sector oeste de la falla que muestra facetas triangulares dando una idea de la actividad de la falla Zurite-Huarocondo. Fotografía tomada hacia el noreste.

Fotografía 4.3 Segmento central de la falla Tambomachay, donde se observa un escarpe principal rectilíneo afectando depósitos cuaternarios con movimiento normal con componente sinestral; véase los drenajes acomodando el movimiento de rumbo. Fotografía tomada hacia el norte.

Fotografía 4.4 Segmentos secundarios del sector central de la falla Tambomachay, las flechas rojas muestran las fallas con buzamientos opuestos, generando estructuras tipo graben. Fotografía tomada hacia el sur.

Fotografía 4.5 Deslizamiento del cerro Picol, ubicado al norte de la ciudad del Cusco, se pueden observar escarpes de fallas en la corona del deslizamiento y otros que cruzan el cuerpo del deslizamiento (flechas rojas). Fotografía tomada hacia el norte.

Fotografía 4.6 Escarpe de falla ubicado en la cabecera del deslizamiento del cerro Picol. Fotografía tomada hacia el noroeste.

Fotografía 4.7 A la izquierda: Segmento de la falla Tambomachay afectando depósitos lacustres con un movimiento de tipo normal (fotografía tomada hacia el noroeste). A la derecha: Se muestran estrías del último movimiento de la falla Tambomachay (fotografía tomada hacia el sur).

Fotografía 4.8 Depósitos lacustres de la secuencia inferior de la formación San Sebastián deformados por el movimiento inverso de la falla Cusco. Vista hacia el norte.

Fotografía 4.9 Contacto fallado entre la Formación Maras y depósitos aluviales. Además se observa un escarpe conservado de 5 metros de altura. Vista hacia el sur.

Fotografía 4.10 Detalle del plano de falla Cusco, en este sector se pueden observar que los clastos de depósito aluvial se encuentran rotados. Vista hacia el sur.

Fotografía 4.11 Vista de la falla activa Qoricocha. El escarpe en este sector tiene 3 metros de altitud, dando evidencia de la acumulación de eventos co-sísmicos en el sector. En 1986 la falla generó una ruptura superficial de 0.1 a 0.2 metros, originando un sismo de 5.6 Mb de magnitud.

Fotografía 4.12 Escarpe principal de la falla Pachatusan que pone en contacto rocas volcánicas con depósitos glaciares y fluvo-glaciares. Además se pueden observar el desplazamiento vertical de las morrenas producto del movimiento de tipo normal. La altura de estos escarpes es de aproximadamente 100 metros.

Fotografía 4.13 Escarpe de la falla Pachatusan de 10 metros de altitud, generando lagunas de colpaso o sand-ponds.

Fotografía 4.14 Escarpe de falla de tipo inverso, se observa como el movimiento inverso de la falla puso en contacto rocas de basamento con depósitos cuaternarios. Asimismo se observa los depósitos de cobertura vegetal plegados producto del movimiento de la falla; este escarpe tiene una altura de 2 metros.

Fotografía 4.15 Escarpe principal de la falla Pachatusan que pone en contacto rocas volcánicas con depósitos glaciares y fluvo-glaciares. Además se pueden observar el desplazamiento vertical de las morrenas producto del movimiento de tipo normal. La altura de estos escarpes es de aproximadamente 100 metros. Así mismo se pueden observar cambios de pendiente de la faz libre del escarpe evidenciando acumulaciones de eventos sísmicos.
Fotografía 4.16 Trinchera natural donde se observa uno de los planos de la falla Pachatusan, donde en la parte superior se ve el contacto fallado de rocas volcán-sedimentarias con depósitos cuaternarios; hacia la izquierda se pueden observar los depósitos glaciares y fluvio-glaciares deformados con buzamiento hacia el sur producto del movimiento de tipo normal de la falla. En este sector no se aprecia un escarpe de falla continuo ya que fue alterado por la actividad antrópica.

Fotografía 4.17 Escarpe de falla afectando depósitos aluviales y fluvio-glaciares con un salto vertical de 20 metros. Realizando una correlación en base a dimensiones, esta morrena se puede correlacionar con las morrenas holocenas del Salkantay. Vista tomando hacia el sur.

Fotografía 4.18 Escarpe de falla afectando morrenas laterales de 11 000 años con movimiento de tipo normal. Las flechas rojas señalan la traza de falla. Vista hacia el norte.

Fotografía 4.19 Escarpes de falla subparalelos afectando morrenas con desplazamientos de 20 metros y generando escalones indicando la actividad tectónica y la consecuente acumulación de eventos sísmicos. Vista hacia el sur.

Fotografía 4.20 Vista hacia el norte de las rocas de la Formación Rumicolca (a la derecha), hacia el fondo se pueden observar escarpes de fallas afectando morrenas de 11 000 años del cerro Atlas con movimientos de tipo normal.

Fotografía 4.21 Escarpe de falla normal de la falla Amaru, se puede observar el aspecto fresco de la cara o faz libre, dando idea de su actividad reciente. El escarpe afecta morrenas laterales, depósitos aluviales y lacustres.

Fotografía 4.22 Escarpe de falla normal de la falla Amaru, el cambio de pendiente de la cara libre o faz libre del escarpe oniendo en evidencia acumulaciones de reactivaciones.

Fotografía 4.23 Escarpe de falla inversa de la falla Amaru. Al fondo se puede ver el valle del Vilcanota.

Fotografía 4.24 Muestra los movimientos inversos de la falla, ubicadas en el frente de deformación. Asimismo, se puede observar que el suelo actual fue afectado con movimiento de tipo inverso.

Fotografía 4.26 Estratificación de la formación Soncco a la altura de la localidad de Casacunca.

Fotografía 4.27 Falla Casacunca ubicada a dos kilómetros de la pampa de Anta y a seis kilómetros de la ciudad del Cusco.

Fotografía 4.28 Reconocimiento de campo con los pobladores del lugar.

Fotografía 4.29 Segmento occidental de la falla Yaurisque, se puede observar el escarpe de tipo normal y facetas triangulares de 25 metros de altitud.

Fotografía 4.30 Segmento oriental de la falla Yaurisque, donde se observa el escarpe conservado de un metro de altitud.

Fotografía 4.31 Escarpe de falla afectando depósitos aluviales y glaciares con movimiento de tipo normal. Las flechas rojas señalan el trazo de falla.

Fotografía 4.32 Escarpe de falla afectando cobertura cuaternaria con movimientos de tipo normal. El escarpe de fallas tiene una latitud de 10 m y se encuentra conservado.

Fotografía 4.33 Grietas cosísmicas afectando gravas aluviales en sectores adyacentes a la falla.

Fotografía 4.34 Falla Zangarará mostrando sus facetas triangulares de 120 metros de altura y afectando depósitos aluviales posiblemente relacionados con el último interglacial. Vista tomada hacia el sur.

Fotografía 4.35 Segmento de la falla Zangarará afectando morrenas y desplazándolas 3 metros verticalmente. Vista tomada hacia el norte.

Fotografía 4.36 Segmento principal activo de la de la falla Zangarará afectando morrenas y depósitos aluviales y desplazándolas 10 metros verticalmente. Vista tomada hacia el norte, asimismo se pueden ver facetas triangulares. Vista tomada hacia el noreste.

Fotografía 4.37 Segmento norte de la falla Languiy-Layo. Se puede observar la buena conservación del escarpe de falla, que se encuentra afectando depósitos cuaternarios. La dirección de este segmento es aproximadamente este-oeste. Foto tomada hacia el norte.
Fotografía 4.38 Escarpe de falla semi-circular, debido a la conexión entre los segmentos norte y central de la falla Langui-Layo; se observa que la falla afecta morrenas y depósitos lacustres.

Fotografía 4.39 Segmento activo de la falla Langui-Layo. La laguna es divida en dos partes por la actividad de la falla. Vista hacia el este.

Fotografía 4.40 Escarpe de tipo normal adyacente a la falla Layo.

Fotografía 4.41 Escarpe de falla afectando morrenas y formando facetas triangulares.

Fotografía 4.42 Vista panorámica de un segmento de la falla Paruro en donde se puede observar el desnivel generado en la superficie producto de la actividad tectónica. La traza pone en contacto areniscas y lutitas de coloración rojiza con depósitos aluviales y coluviales de la edad cuaternaria.

Fotografía 4.43 Faceta triangular asociada a la falla Acomayo. Se puede observar al pie del escarpe de falla una serie de depósitos coluviales producto de las reactivaciones de la falla.

Fotografía 4.44 Escarpe de falla de 100 metros de altitud, a la derecha se ubica el poblado de Acomayo, capital de la Provincia del mismo nombre.

Fotografía 4.45 Facetas triangulares asociadas a la falla Acomayo. Al pie de estas facetas se observan fallas afectando cobertura cuaternaria.

Fotografía 4.46 Reactivación con ruptura superficial de la falla Paruro. El escarpe de falla tiene 10 metros de altitud. Se observan asimismo dolinas adyacentes a la falla.

Fotografía 4.47 Escarpe de falla y estrías observadas en la cara libre del escarpe central. En la parte superior se observa dos proyecciones estratigráficas con poblaciones de fallas principales y secundarias, la primera sugiere extensión con esfuerzo principal N45°E dando lugar a la reactivación de la falla con movimiento de tipo normal; el esfuerzo principal de la segunda proyección (N60°E) sugiere movimiento de tipo dextral con componente normal. Se puede observar que las estrías de tipo dextral cortan las de tipo normal.

Fotografía 4.48 Flanco occidental del cerro Marannioj donde se observan dos escarpes de falla cruzando el cuerpo del deslizamiento y proyectándose hasta la corona de este.

Fotografía 4.49 Terraza aluvial afectada por el movimiento de la falla de tipo inverso.

Fotografía 4.50 Escarpe de falla de 50 metros de altitud en el sector de Sigrinacocha.

Fotografía 4.51 Escarpe de falla de 0.40 metros de altitud en el sector de Sigrinacocha.

Fotografía 4.52 Escarpe de falla de sector Ausangate, al fondo se puede apreciar la cordillera de Ausangate.

Fotografía 4.53 Escarpe de falla del sector Ausangate, afectando morrenas de 14 000 años (Mercer & Palacios, 1977).

Fotografía 4.54 Escarpe de falla afectando morrenas en el sector de Ocongate.

Fotografía 4.55 Escarpe de falla del sector de Colquepata.

Fotografía 4.56 Morrena lateral en el sector de Colquepata desplazada por la falla Colquepata.

Fotografía 4.57 Escarpe de falla Chahuaytire, se pueden observar los depósitos fluvio-glaciales desplazados por la actividad de la falla.

Fotografía 4.58 Escarpe de falla de Cuyo Chico, vista tomada hacia el noreste.

Fotografía 4.59 Falla Machacancha en la quebrada Qorpahuayqo.

Fotografía 4.60 Facetas triangulares en la ladera del cerro Bellavista producto de la actividad de tipo normal de la falla Quellouno, el desnivel generado es de 35 metros.

Fotografía 4.61 Escarpe de falla afectando depósitos cuaternarios en el cerro Televan con movimiento de tipo normal, asimismo se pueden apreciar escarpes secundarios de 0.40 metros de altitud.
Fotografía 4.62 Vista lateral de la falla cuaternaria donde se pueden observar las variaciones de pendiente en la cara o faz libre.

Fotografía 4.63 Escarpes de fallas afectando morrena en el cerro Otocani, se pueden observar la conservación morfológica de todas estas estructuras.

Fotografía 4.64 Vista panorámica del sector de fallas ubicadas en el cerro Otocani.

Fotografía 4.65 Escarpes de fallas afectando morrena en el cerro Solan, la conservación morfológica de todas estas estructuras nos sugieren actividad reciente.

Fotografía 4.66 Escarpes de fallas afectando morrena en el cerro Solan, la conservación morfológica de todas estas estructuras nos sugieren actividad reciente.

Fotografía 4.67 Escarpes de fallas subparalelos en la cima del cerro Rancaypata, frente a la localidad de Solan.

Fotografía 4.68 Escarpa de falla de 15 metros de altitud y con buzamiento a favor de la pendiente que da lugar a la generación de procesos de movimientos en masa.

Fotografía 4.69 Escarpes de fallas en la margen derecha río Mapacho, se pueden apreciar los desniveles y/o deformación de la superficie generados por la actividad tectónica.

Fotografía 4.70 Escarpa de falla en la margen izquierda río Mapacho, a la altura de la localidad de Challabamba. Se aprecia el desnivel que genera en la superficie y su buen estado de conservación, al pie del escarpe se pudieron observar cuñas coluviales que indican su actividad tectónica.

Fotografía 4.71 Vista lateral de la deformación compresiva de los depósitos fluvio-glaciares producto de movimiento de la falla. Se puede apreciar la distribución y alineación de los fragmentos de rocas y de matriz con relación al plano de falla.

Fotografía 4.72 Trinchera que muestra el movimiento reciente de tipo normal de la falla. Se puede observar el desplazamiento de los fragmentos de rocas en matriz blanca, así como también de la cobertura vegetal.

Fotografía 4.73 Escarpa de falla en las altura del cerro Sinchuyoc, se puede observar el estado fresco de la estructura tectónica que sugiere actividad cuaternaria.

Fotografía 4.74 Escarpes de fallas subparalelas ubicadas a lo largo del camino al mirador de Tres Cruces. Las fallas desplazan con movimientos de tipo normal basamento rocoso y cobertura cuaternaria.

Fotografía 4.75 Escarpes de fallas en el sector de Tres Cruces, estas generan facetas triangulares y tienen una distribución subparalela.

Fotografía 5.1 Muestra uno de los escarpes activos de la falla Pachatusan. Realizamos un perfil de una longitud de 820 metros, llegando a caracterizar a profundidad cinco trazas de fallas activas y con buzamientos hacia el sur.

Fotografía 6.1 Estructuras ball and pillow en nivel de arena. Quebrada Tenería.

Fotografía 6.2 Nivel de mezcla asociado a un evento sísmico. Nótese el mayor grado de desorganización del nivel superior. Quebrada Cochapata.

Fotografía 6.3 Intrusión de arena donde las laminaciones de los niveles intruidos se deforman hacia el muro y techo. Quebrada Cochapata.

Fotografía 6.4 Agrietamientos del terreno, sobre depósitos lacustres de la formación San Sebastián en el terremoto del 31 de marzo de 1950, la escarpa tiene una altura de 35 centímetros y está ubicada al sur de la cuenca del Cusco y al suroeste del distrito de San Sebastián. (Ericksen G. et al., 1954)

Fotografía 6.5 Vistas de procesos de licuación de suelos: Arriba: formación de volcanes de arena, en el sector de Cabeza de Toro y Chongos (margen derecha del valle de Pisco) y Abajo: es un acercamiento del volcán de arena, donde se pueden aún observar huellas de los fluidos.

Fotografía 6.6 Detalles de una zona de agrietamientos, mostrando estructuras roll-over en el sector entre Casalla y Chongos (valle de Pisco).

Fotografía 6.7 Zona de agrietamientos (Pisco).
Fotografía 6.8 Se observa el hundimiento de esta vivienda, producto de procesos de licuefacción de los suelos. Sector Tambo de Mora.

Fotografía 6.9 Asentamiento de viviendas por procesos de licuación de suelos, provocando los colapsos en las viviendas, Pisco 2007.

Fotografía 8.1 Ejemplo de estación geodésica o hito geodésico empleado para el monitoreo de las fallas activas en la región Cusco. En la foto se muestra la estación QORI, cerca de la laguna Qoricocha, ocupada por un GPS diferencial de doble frecuencia.

Fotografía 8.2 Hitoe geodésico tipo I. (A) Hito en construcción. (B) Ocupación del hito con el GPS Trimble R6.

Fotografía 8.3 Hitoe geodésico tipo II. (A) Hito en implementación. (B) Ocupación del hito con el GPS Trimble R6.

Fotografía 8.4 Falla Tambomachay donde se puede apreciar el sistema de drenaje deformado y acomodando a movimiento de rumbo de tipo sinextral.

Cuadros

Cuadro 1.1 Cusco: Coordenadas de ubicación territorial
Cuadro 2.1 Unidades geomorfológicas de la región Cusco
Cuadro 6.1 Probables procesos detonados por sismos
Cuadro 7.1 Ponderación de variables temáticas
Cuadro 7.2 Valoración de las unidades litológicas en relación al análisis de susceptibilidad a los movimientos en masa
Cuadro 7.3 Valoración de las unidades geomorfológicas en relación al análisis de susceptibilidad a los movimientos en masa
Cuadro 7.4 Valoración de clases de pendiente en relación al análisis de susceptibilidad a movimientos en masa
Cuadro 7.5 Valoración de las unidades de cobertura vegetal y uso de suelo, en relación al análisis de susceptibilidad a movimientos de masa.
Cuadro 7.6 Grados de susceptibilidad a los movimientos en masa
Cuadro 7.7 Ponderación de variables temáticas
Cuadro 7.8 Valoración de las unidades litológicas en relación al análisis de susceptibilidad a procesos de licuefacción de suelos y/o asentamientos
Cuadro 7.9 Caracterización hidrogeológica de los depósitos incondensados
Cuadro 7.10 Valoración de las unidades geomorfológicas en relación al análisis de susceptibilidad a procesos de licuefacción de suelos y/o asentamientos
Cuadro 7.11 Grados de susceptibilidad a procesos de licuefacción de suelos y/o asentamientos
Cuadro 7.12 Características de las cinco fallas geológicas estudiadas en el presente trabajo
Cuadro 7.13 Clasificación de suelo según la velocidad de las ondas de corte (BSSC, 2004)
Cuadro 7.14 Grados de aceleración sísmica
Cuadro 7.15 Grados de peligrosidad a movimientos en masa
Cuadro 7.16 Grados de peligrosidad a procesos de licuefacción de suelos y/o asentamientos
Tabla 8.1 Descripción de los hitos geodésicos implementados en la región Cusco
Tabla 8.2 Valores de velocidad estimados para 8 estaciones GPS empleados en el presente trabajo. Se muestran las magnitudes y la incertidumbre de cada valor en las tres componentes
Tabla 8.3 Coordenadas y fecha de instalación de los puntos de control en lared de monitoreo del deslizamiento de Cuyo Chico. Las coordenadas están en datum WGS84