

# MEMORANDUM Nº 487-2003-DL

AL

Ing. Manuel Paz Maidana

Director de Geología Económica y

Prospección Minera.

**ASUNTO** 

ESTUDIO PETROMINERALOGICO

REF.

Memo. Nº 338-2003-DGEPM

**FECHA** 

Lima, 10 de Octubre del 2003.

Me dirijo a Ud., a fin de hacerle llegar adjunto al presente el Estudio Petromineralógico de 05 muestras, procedentes del AREA DE NO ADMISIÓN DE DENUNCIOS (Limamayo), a cargo del Ing. Pedro Olivares B.

Atentamente,

ING. RUFO PAREDES PACHECO Director de Laboratorios 18GEMMET

Lima, 13/10/2003

Al

Ing. Pedro Olivares

Para su conocimiento y fines pertinentes.

Ing<sup>o</sup> MANUEL PAZ MAIDANA Director de Geologia Económica

y Prospeación Minera INGEMMET



## MEMORANDUM Nº 487-2003-DL

AL

Ing. Manuel Paz Maidana

Director de Geología Económica y

Prospección Minera.

**ASUNTO** 

ESTUDIO PETROMINERALOGICO

REF.

Memo. Nº 338-2003-DGEPM

**FECHA** 

Lima, 10 de Octubre del 2003.

Me dirijo a Ud., a fin de hacerle llegar adjunto al presente el Estudio Petromineralógico de 05 muestras, procedentes del AREA DE NO ADMISIÓN DE DENUNCIOS (Limamayo), a cargo del Ing. Pedro Olivares B.

Atentamente,

Ing. RUFU PAREDES PACHECO
Director de Laboratorios
18GEMMET

Lima, 13/10/2003

Al

Ing. Pedro Olivares

Para su conocimiento y fines pertinentes.

Ing<sup>o</sup> MANUEL PAZ MAIDANA Director de Geologia Económica

y Prospeación Minera INGEMMET

# ESTUDIO PETROMINERALÓGICO

## Muestra Nº M-28 (03100301).-

La muestra corresponde a una roca alterada, la cual contiene escasos granos de minerales metálicos.

La **pirita** se presenta como cristales anhedrales a subhedrales, diseminados en la roca. Miden menos de 0.025 mm. Se alteran a hematita en los bordes, estando ambos minerales asociados. Ocurren a nivel de trazas.

La **anatasa** se presenta en cristales anhedrales, diseminados en la ganga. Los granos miden menos de 0.04 mm. No se observa ninguna relación con los demás minerales. Están a nivel de trazas.

La **esfalerita** se presenta como trazas, en cristales anhedrales y diseminados en la ganga. Los granos miden menos de 0.02 mm. Ocurren como trazas.

Los óxidos de Hierro (hematita – limonitas) se presentan como relleno de intersticios, cavidades y tiñendo parcialmente sectores de la roca. De ellos la hematita altera a la pirita en los bordes.

Textura.- Diseminada

Posible secuencia de formación mineral.- Como los minerales están diseminados, la paragénesis es tentativa:

Anatasa Pirita Esfalerita Hematita – Limonitas

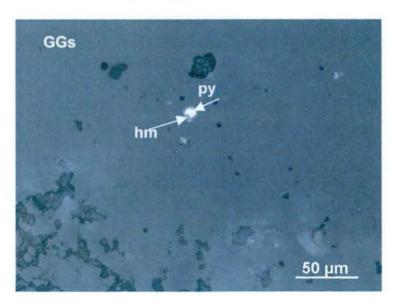



Foto Nº 1.- Uno de los escasos granos de pirita (py). Se encuentra rodeado por la hematita (hm), mineral que lo altera casi completamente. Ambos minerales están diseminados en la ganga (GGs).

#### Muestra 2761.- 03100303.-

La muestra corresponde a una mineralización masiva, en la cual se puede apreciar abundante magnetita y óxidos de Fe.

La **magnetita** es el mineral más abundante en la muestra y se presenta en forma masiva, Se le observa fracturada, lo que es aprovechado por la hematita y limonitas para alterarlo. Tiene porosidades, algunas de las cuales están rellenas por pirrotita y/o calcopirita, minerales a los cuales está asociado. Su porcentaje llega al 80 %.

La **pirrotita** se presenta en cristales anhedrales, tomando la forma de la porosidad que rellena, las cuales son diminutas, llegando a medir menos de 0,02 mm. Algunas veces junto a la calcopirita rellenan una de las porosidades, siendo posible que la calcopirita la reemplace. Ambos minerales están asociados. Ocurre como trazas.

La calcopirita se presenta como cristales anhedrales, menores a 0.01 mm. Rellena algunas de las escasas porosidades de la magnetita, ya sea en forma individual o asociada a la pirrotita y bornita. Parece reemplazar ala pirrotita. Ocurre como trazas. La bornita es muy escasa y solo a sido observada rellenando algunas porosidades de la magnetita y asociada a la calcopirita. Está como trazas

Los óxidos de Fe (hematita y limonitas) se presentan como alteración de la magnetita, observándoseles en los bordes, fracturas y planos de clivaje. Está alteración es relativamente escasa, aunque en sectores se hace más intensa, debido a un incremento en las microfracturas. Su porcentaje llega al 5 %.

Textura.- Masiva y relleno de fracturas.

Posible secuencia de formación mineral:

Magnetita Pirrotita Calcopirita, Bornita Hematita, Limonitas

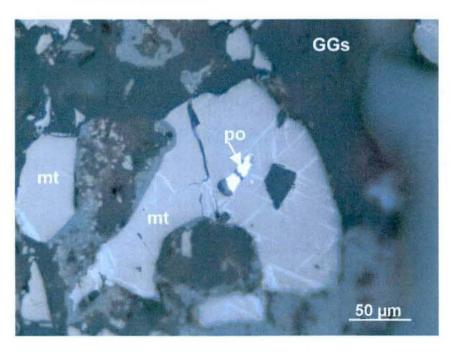



Foto Nº 2.- Granos de pirrotita (po) rellenando una porosidad en la magnetita (mt). Hematita (hm) alterando a la magnetita a través de los planos de clivaje. La parte oscura corresponde a la ganga (GGs).

## Muestra Nº 2763 (03100304).-

La muestra se encuentra muy oxidada y no se observa a simple vista, ningún mineral metálico.

La **magnetita** se presenta como cristales anhedrales, residuales, con tamaños inferiores a 0.2 mm. Se encuentran completamente rodeados por la hematita, mineral que lo altera casi en su totalidad. El porcentaje es menor al 15 %.

Los óxidos de Fe (hematita y limonitas) se presentan en toda la muestra, especialmente rodeando a la magnetita y rellenando fracturas, porosidades y cavidades. De ellos, las limonitas son las que mayormente rellenan las cavidades y fracturas. El porcentaje de ambos llega al 75 %, el resto corresponde a la ganga.

Textura.- Masiva y relleno de fracturas.

Posible secuencia de formación mineral:

Magnetita Hematita, Limonitas

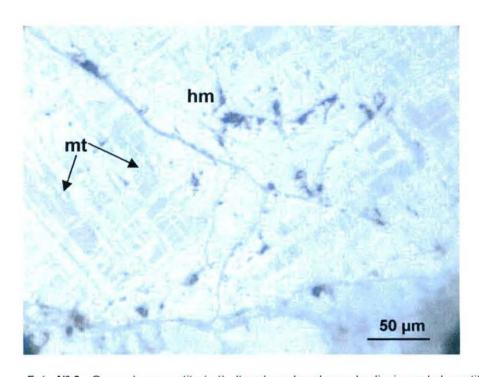



Foto  $N^{\circ}$  3.- Grano de magnetita (mt) alterado en los planos de clivaje por la hematita (hm). De la magnetita solo quedan relíctos.

## Muestra Nº M-28 (03100301).-

Muestra de roca alterada, la cual presenta una costra de oxidación superficial. A simple vista no se observan minerales metálicos.

En la muestra se observa que ha sufrido una intensa silicificación, caracterizada por la presencia de cuarzo en granos anhedrales y diminutos (< 0.12 mm). Estos granos parecen haber reemplazado a minerales persistentes, posiblemente a feldespatos.

Rodeando a estos moldes silicificados, se observan abundantes granos de cuarzo, pero de menor tamaño (< 0.7 mm) que aparentan haber alterado a la matriz.

En sectores se pueden localizar agregados de micas (muscovita) las cuales aparentemente se encuentran siguiendo un trazo (¿textura?) curva la cual pudo haber correspondido anteriormente a una roca sedimentaria.

Los minerales opacos son escasos y se presentan como cristales anhedrales a subhedrales, con tamaños menores a 0.15 mm. Son escasos.

Textura. - Granoblástica.

Alteraciones.- Silicificación intensa, micácea débil a moderada.

Clasificación.- Roca silicificada.

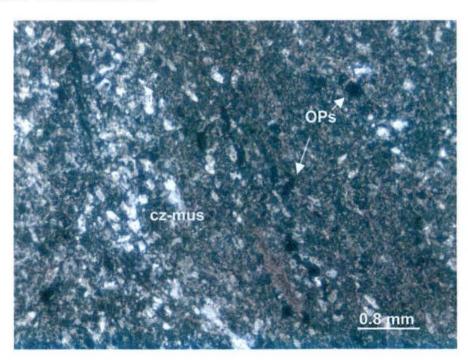


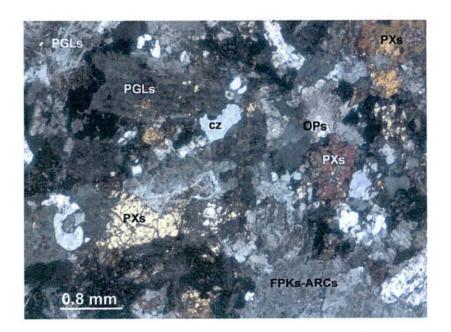

Foto Nº 4.- Agregado de granos de muscovita (mus) con cuarzo (cz). Escasos minerales opacos (OPs) diseminados.

## Muestra Nº M-24 (03100303.-

La muestra corresponde a una roca ígnea, con textura microgranular, alterada débilmente.

El feldespato potásico es el mineral más abundante y se presenta en cristales anhedrales con tamaños hasta de 1.3mm. Se encuentran alterados parcialmente por arcillas. El porcentaje aproximado es de 40 %

Las plagioclasas se presentan en cristales de formas tabulares, con tamaños hasta de 1.8 mm. Se encuentran macladas y algunas de ellas zonadas. Están alteradas por arcillas, sericita, calcita y epidota. El porcentaje llega al 25 %.


El cuarzo se presenta en cristales anhedrales, en tamaños inferiores a 0.4 mm. Ocurren como relleno intersticial. El porcentaje llega al 15 % en promedio.

Los piroxenos se presentan en cristales subhedrales, con tamaños menores a 1.6 mm. Se encuentran dispersos en la roca. Se alteran a calcita. El porcentaje aproximado es de 12 %.

Los minerales opacos se presentan en cristales anhedrales a subhedrales, diseminados en la ganga. Los granos miden menos de 0.2 mm. Ocurren a nivel de trazas.

Los minerales secundarios proceden de la alteración de las plagioclasas (arcillas, sericita, calcita, epidota), feldespato potásico (arcillas), piroxenos (calcita y epidota). Todos los minerales de alteración suman el 8 %.

Textura.- Granular, Holocristalina. Alteraciones.- Argilización, Sericitización, carbonatación, epidotización débiles. Clasificación.- Cuarzo Monzonita.



**Foto № 5.-** Cristales de plagioclasas (PGLs), Feldespato potásico (FPKs) alterado superficialmente por las arcillas (ARCs), piroxenos (PXs) y granos de cuarzo (cz) rellenando intersticios.

Thuda Ing. RUFO PAREDES PACHERO
Director de Laboratorios
INGEMMET

ALBERTO ARANDA VERCELLI Geólogo Mineralogista

