Regional Study of Applied Satellite Data for Evaluation of Resource Potential in the Northern Area of the Republic of Peru, Phase II

March, 1999

Mitsui Mining & Smelting Co., Ltd., 1-11-1 Osaki, Shinagawa-ku, Tokyo, Japan, Tel. 81-3-5437-8077, Fax. 81-3-5437-8078

Mitsui Oil Exploration Co., Ltd., 1-2-9 Nishi-Shimbashi, Minato-ku, Tokyo, Japan, Tel. 81-3-3502-5789, Fax. 81-3-3502-5650

Abstract

The purpose of this study is to evaluate the regional resource potential of northern Peru by satellite image analysis. This study is being jointly carried out with Instituto Geológico Minero y Metalúrgico del Perú "INGEMMET" and Perupetro S.A. The term of this project is scheduled to be three years with this year being the second year of the project. The study area for this year was between latitudes 4° 30' S and 7° S in the N-S direction, and the Pacific Ocean and Brazilian border in the E-W direction.

The western portion of the study area, the Andean mountain range region, is known as a metallogenic region, and numerous metallic ore deposits, such as Yanacocha mine (gold dissemination type in massive silicified rocks), La Ganja mine (porphyry copper type) and Hualgajoc mine (polymetallic vein type) are located here. Geologic interpretation and spectral analysis of LANDSAT TM data and field survey for alteration mapping in this region have been carried out, as well as a prototype of computer programme to aid potential evaluation analysis by geologists, using GIS data set as input data, have been developed. This programme will be completed and applied for evaluation of the whole Andean mountain range region in the next fiscal year. As a result of the study in the metallogenic region so far, concentration of mercury and arsenic is recognised in one of the silicified zones causing a TM spectral anomaly in the Chota area where the Yanacocha and Hualgajoc mines are located. It suggests a possibility that this silicified zone might be accompanied by gold mineralization. The test case of the prototype programme for potential evaluation shows its effectiveness applied to regional evaluation of resource potential.

The eastern portion of the study area, the Sub-Andean mountain range and low lands in the up stream region of the Amazon river, is a major oil producing area in Peru and so far the Yanayacu oil field has been developed in the area. Interpretation of LANDSAT TM and JERS-1 SAR mosaic images for geotectonic analysis and existing geological/geophysical data collection and subsequent analysis have been carried out. Two sub-areas of interest have been selected and detailed studies have been done in these areas. As a result of the studies so far, some geotectonic characteristics related to possible new play for the oil/gas exploration have been identified by satellite images. Based on the newly acquired geological, geophysical and geochemical data from Perupetro S. A., the "Local Kitchen Hypothesis" which have been proposed to explain the situation of oil/gas fields in the Ucayali basin in 1998 was also tested. Although there is a strong relationship between local heating and oil fields, details are not still clear. Further data collection such as gas composition analysis etc. and study are necessary.

Regional Study of Applied Satellite Data for Evaluation of Resource Potential in the Northern Area of the Republic of Peru, Phase II

March, 1999

Mitsui Mining & Smelting Co., Ltd., 1-11-1 Osaki, Shinagawa-ku, Tokyo, Japan, Tel. 81-3-5437-8077, Fax. 81-3-5437-8078

Mitsui Oil Exploration Co., Ltd., 1-2-9 Nishi-Shimbashi, Minato-ku, Tokyo, Japan, Tel. 81-3-3502-5789, Fax. 81-3-3502-5650

Abstract

The purpose of this study is to evaluate the regional resource potential of northern Peru by satellite image analysis. This study is being jointly carried out with Instituto Geológico Minero y Metalúrgico del Perú "INGEMMET" and Perupetro S.A. The term of this project is scheduled to be three years with this year being the second year of the project. The study area for this year was between latitudes 4° 30' S and 7° S in the N-S direction, and the Pacific Ocean and Brazilian border in the E-W direction.

The western portion of the study area, the Andean mountain range region, is known as a metallogenic region, and numerous metallic ore deposits, such as Yanacocha mine (gold dissemination type in massive silicified rocks), La Ganja mine (porphyry copper type) and Hualgajoc mine (polymetallic vein type) are located here. Geologic interpretation and spectral analysis of LANDSAT TM data and field survey for alteration mapping in this region have been carried out, as well as a prototype of computer programme to aid potential evaluation analysis by geologists, using GIS data set as input data, have been developed. This programme will be completed and applied for evaluation of the whole Andean mountain range region in the next fiscal year. As a result of the study in the metallogenic region so far, concentration of mercury and arsenic is recognised in one of the silicified zones causing a TM spectral anomaly in the Chota area where the Yanacocha and Hualgajoc mines are located. It suggests a possibility that this silicified zone might be accompanied by gold mineralization. The test case of the prototype programme for potential evaluation shows its effectiveness applied to regional evaluation of resource potential.

The eastern portion of the study area, the Sub-Andean mountain range and low lands in the up stream region of the Amazon river, is a major oil producing area in Peru and so far the Yanayacu oil field has been developed in the area. Interpretation of LANDSAT TM and JERS-1 SAR mosaic images for geotectonic analysis and existing geological/geophysical data collection and subsequent analysis have been carried out. Two sub-areas of interest have been selected and detailed studies have been done in these areas. As a result of the studies so far, some geotectonic characteristics related to possible new play for the oil/gas exploration have been identified by satellite images. Based on the newly acquired geological, geophysical and geochemical data from Perupetro S. A., the "Local Kitchen Hypothesis" which have been proposed to explain the situation of oil/gas fields in the Ucayali basin in 1998 was also tested. Although there is a strong relationship between local heating and oil fields, details are not still clear. Further data collection such as gas composition analysis etc. and study are necessary.

Fig. 1. Location of the study areas and data used.

.

図 2. 対象地域の地質図

Fig. 2. Geologic map of the study area.

図 3. 対象地域の金属鉱床分布

Fig. 3. Metallogenic map of the study area.

53

図 5. アンテス地域TM地質判読図

Fig. 5. TN geologic interpretation map of the Andean region.

Geologic Age		Geologic Age Units in the interpretation map		Lithology (inferred)
	Quatamaga	Qh	Qh	gravel, sand, silt
	Quaternary	Qpl	Qpl	gravel, sand, silt
Cenozoic	Pliocene- Miocene	No	Nc	sedimentary
	Oligocene-Miocene	NONVS	Nvs	volcanic
	Eocene	Р	Р	sedimentary
	Cretaceous- Palaeogene	Ksp	Ksp	intrusive
	0	Ks	Ks	sedimentary
Mesozoic	Cretaceous	NIKS PRO	Ki	sedimentary
	Jurassic		J	sedimentary
	Triassic-Jurassic		Trs-Ji	sedimentary
Palaeozoic	Permian		Ps	sedimentary
	Ordovician-Silurian	1 m 1	Pi	sedimentary
Proterozoic	Pre-Cambrian		Pe	metamorphic

表 1. アンデス地域TM判読図地質単元

Table 1. Geologic units of the TM interpretation map of the Andean region.

表 2. マラニョン地域画像判読図地質単元

Table 2. Geologic units of the image interpretation map of the Marañon region.

Geologic Age		Geologic Age Units in the interpretation map		Lithology (inferred)
		-	Qh	gravel, sand, sil
	Quaternary	ũ	Qpl	gravel, sand, sill
Cenozoic	nozoic Pliocene- Miocene	Nc	sedimentary	
	Oligocene-Miocene	12	Nvs	sedimentary
	Eccene	T1	Р	sedimentary
	Cretaceous- Palaeogene	10	Ksp	intrusive
	-	K M	Ks	sedimentary
Mesozoic	Cretaceous		Ki	sedimentary
	Jurassic		J	sedimentary
	Tnassic-Jurassic		iL-enT	sedimentary
	Permian		Ps	sedimentary
Palaeozoic	Ordovician-Silurian	San Star	Pi	sedimentary
Proterozoic	Pre-Cambrian	和政治目的	Pe	metamorphic

- 10 -

図 6. アンデス地域TMリニアメント図

.

- 14 -

図 10. 調査地点9 (Cerro Cimarronas)の状況 Fig. 10. View of the site 9 (Cerro Cimarronas).

100

図 11. 調査地点9 (Cerro Cimarronas)の珪化岩 Fig. 11. Silicified rock at site 9 (Cerro Cimarronas).

di

		Sedim	entary (& volcanic	unita			
	0	Halanda	6	(r-al	-	Alluvium		_
	Quaternary	Hosocene	6	dr-fg	G	lacier deposits	-	Thrust faults
Cenozoic		Upper	Т	's-vh	Hu	ambos volcanic		Faults
	Tertiary	Middle	Ti	m-vp	Calipuy	Porculla volcanic	-	Faults
		Lower	T	i-vII	Group	Llama volcanic	-	Synclines
			K	ti-ch	C	hota formation		Anticlines
		Upper	Ks-c		Celendin formation		-	- 11
			K	im-e	Cajamarca formation		-	Pathammetra
	[Km-q Km-p		Quillquinan group		5	Spectral anomalies
					Pu	illuicana group		Gold mines or prospects
Mesozoic	Cretaceous	Middle		Km-pa	Paria	stambo formation	-	
			Km-	Km-ch	Ch	ulec formation	-	Copper mines or prospects
	I [Kap	Km-I	1	nca formation	•	Polymetallic mines or prospect
		1	12	Ki-f	Fa	rrat formation		Geochemical sampling points
		Lower	NI-8	Ki-c	Car	huaz formation]
			Intrus	we unit				
Canozoic	Tertiary	Middle	Т	da		Dacite		

図 13. 有望度評価ツール入力データ

Fig. 13. Input data of the potential assessment tool.

- 22 -

Ge	ologic units	3
Propo	ortional tiplier	1.00
	Qr-al	0.00
[Qr-fg	0.00
[Ts-vh	1.00
[Tim-vp	1.00
[Ti-vII	1.00
1	KTi-ch	0.00
[Ks-c	0.00
	Km-c	0.50
Waighta	Km-q	0.00
weights	Km-p	0.50
	Km-ichp	0.00
[Km-pa	0.00
[Km-ch	0.00
[Km-i	0.00
	Ki-f	0.00
	Ki-c	0.00
	Ki-g	0.00
	T-da	1.00

		表 3.	判定	29-	ルス	力変数一點	i i	
Table	3.	Input parame	eters	for	the	potential	assessment	tool.

0.50

1.00

2.00

2.00

2.00

3000.00

Geologic boundary

T-da

T-da / Kmc

Tda / Km-p

Inverse-proportional

multiplier Minimum distance

(meter) Maximum distance

(meters) Weight

of

boundar

Weights of contact

Ge	ologic structu	are
Inverse-p mu	proportional ltiplier	0.30
Minimu (m	1.00	
Maximu (m	3000.00	
	Thrust	1.00
Weights	Fault	2.00
	Syncline	2.00
	Anticline	4.00

M	ines & Prospe	cts
Inverse-j mu	proportional tiplier	0.20
Minimu (n	m distance neter)	1.00
Maximu (m	m distance eters)	5000.00
Walahaa	Gold	3.00
oftime	Copper	2.00
of type	Polymetalli	1.00
	Big	5.00
Weights of size	Medium	3.00
	Small	2.00
	Prospect	1.00

Geo	chemical da	ta
Inverse-pr mult	0.20	
Minimum (me	ter)	1.00
Maximum (met	distance ters)	3000.00
	Au	5.00
	Ag	5.00
	Cu	5.00
Woighta	Pb	5.00
weights	Zn	5.00
	As	3.00
elements	Sb	3.00
	Te	3.00
	Hg	3.00

	Total score	
	Geologic unit	5.00
	Unit boundary	15.00
	Geologic structure	10.00
Weights	Mines & Prospects	20.00
	Geochemic al data	50.00
	Spectral anomaly	0.75
	Lineament density	0.50

Minimum X (meters)	719000
Minimum Y (meters)	9225000
Maximum X (meters)	777000
Maximum Y (meters)	9282000
Grid size (meters)	1000

Propor multi	rtional iplier	1.00
Weight	Iron	1.00

Line	ament densi	ty
Prop	ortional tiplier	0.50
Weight	Lineamen	1.00

- 25 -

Fig. 15. The potential assessment map of Chota area.

図 16. ペルーの内陸堆積盆地(マラニョン/ウカヤリ)及び地質断面図 Fig. 16. Location map of Sub-Andean basin in Peru(Marañon/ Ucayali)

図 18. マラニョン地域JERS-1 SAR モザイク画像 Fig. 18. JERS-1 SAR mosaic image of the Marañon region.

図 19. マラニョン地域画像地質判読図 Fig. 19. JERS-1 SAR geologic interpretation map of the Marañon region.

図 20. マラニョン地域水系図 Fig. 20. Drainage system of the Maranon region.

923

-54

図 22. マラニョン地域地質断面図 Fig. 22. Geological cross-section of southern part of Maranon basin.

	PERIOD	FORMATION	LITHOLOGY	AVE. THICK (ft)	Petroleum System		
ERA					Reservoir	Seal	Source
CENOZOIC	QUATERNARY	ALLUVIUM					
	NEOGENE	IPURURO FM PEBAS-CHAMBIRA FM		1000 - 5000			
	PALEOGENE	POZO FM.	A CONSIGNATION OF THE	1000 - 1500	10 0 0 10 0		P
		YAHUARANGO FM		100 - 6000			_
ZOIC	CRETACEOUS	CASA BLANCA FM.		0 - 150		t crastal products	F
		HUCHPAYACU FM		0 - 250			_
		CACHIYACU FM.		0 - 300			P
		VIMAN FM.		90 - 600	•		
		CHONTA FM.		500 - 2800	6		
		AGUACALIENTE FM.		180 - 1100			
ESC		RAYA FM.		50 - 350			P
Σ		CUSHABATAY FM	hunner	100 - 1650	•		
		LUUUUU	pacasas	Helle			
	JURASSIC	UPPER PUCARA GP.		0 - 4000			
ł	TRIASSIC	mmmm		11111	ľ		
-		<u> </u>	MMMM				
PALEOZOIC	PERNIAN	ENE FM		0 - 200			
		COPACABANA GP.		0 - 1600			-
	CARBONIFEROUS	TARMA GP		0 - 1200		的复数	
				<u>IIII</u>			
		AMBO GP		0 - 1500			
		<u> AULUUUU</u>	<u> MANDIN</u>	(1111)			
	DEVONIAN	CABANILLAS GP		0.3500			
	SILURIAN			(IIII)			
Γ	ORDOVICIAN	CONTAYA FM.		0-2000			
F	CAMBRIAN		1111111111	1111			

図 24. マラニョン堆積盆地の標準地質柱状図 Fig. 24. Standard stratigraphic section of the Maranon basin.

図 25. 「ローカルキッチンエリア」仮説モデル Fig. 25. "Local kitchen area" model in Ucayali basin.

図 26. ウカヤリ堆積盆地の主要根源岩 (Pucara層群)の分布 Fig. 26. Pucara Group source rock in the Ucayali basin.

