Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12544/3031
Full metadata record
Samaniego Eguiguren, Pablo
Rivera Porras, Marco Antonio
Manrique Llerena, Nélida
Schiavi, Federica
Nauret, François
Liorzou, Céline
Ancellin, Marie-Anne
Volcán Ubinas
Moquegua
Perú
2020-12-18T04:50:37Z
2020-12-18T04:50:37Z
2020-12
Samaniego, P.; Rivera, M.; Manrique, N.; Schiavi, F.; Nauret, F.; Liorzou, C. & Ancellin, M-A. (2020) - Linking magmatic processes and magma chemistry during the post-glacial to recent explosive eruptions of Ubinas volcano (southern Peru). Journal of Volcanology and Geothermal Research, 407: 107095. https://doi.org/10.1016/j.jvolgeores.2020.107095
https://hdl.handle.net/20.500.12544/3031
Understanding the links between the magma differentiation processes, the magma plumbing system and the magma composition at arc volcanoes is of paramount importance for volcanic hazard assessment. In this work we focus on the post-glacial, Holocene, historical, and recent eruption products of Ubinas volcano (Peru), which display an overall decrease in silica content from the older, plinian (VEI 3–5), rhyolitic eruptions (69–71 wt% SiO2) to the historical and recent (2006–2009, 2013–2017), vulcanian (VEI 1–2) basaltic andesitic eruptions (55–57 wt% SiO2). Based on a comprehensive study of the major and trace elements and the Sr-Nd-Pb isotopes, we conclude that this temporal pattern reflects the evolution of the Ubinas magmas in the middle-to-upper crust by a coupled Assimilation-Fractional Crystallization (AFC) process involving a cumulate composed of plagioclase, amphibole, clinopyroxene, orthopyroxene and Fe–Ti oxides, with minor amounts of olivine and biotite at the mafic and felsic end-members, respectively. Upper crustal assimilation is limited to 5–8 vol%, but the overall radiogenic Sr-Nd-Pb signature of the Ubinas magmas requires a larger crustal component, which must therefore occur at middle to lower crustal depths. The petrology of the Ubinas magmas also points to an overall increase in P-T conditions: the large Holocene dacitic and rhyolitic eruptions record temperatures ranging from 800 to 850 °C and pressures in the range of 200–400 MPa, whereas the historical and recent (2006–2009, 2013–2017) basaltic andesitic eruptions provide higher temperatures and pressures (1000 °C, >300–400 MPa). Overall, the thermo-barometry, phase equilibrium and geochemical constraints allow us to propose the existence of a middle-to-upper crust magma column composed of a highly crystalline magma mush containing batches of liquid magma, which seems to be continually recharged from deeper levels. On the basis of the petrological nature of the historical basaltic andesitic eruptions (1667 CE, 2006–2009, 2013–2017), we postulate that during the last centuries, Ubinas experienced a recharge-dominated process, with no evidence for a rejuvenation of the silica-rich reservoir that fed the large Holocene dacitic to rhyolitic eruptions. This study highlights the importance of detailed petrological studies of Holocene sequences at explosive arc volcanoes in order to constrain the magmatic processes and conditions that control large explosive eruptions.
application/pdf
eng
Elsevier B.V.
urn:issn:0377-0273
info:eu-repo/semantics/restrictedAccess
Repositorio Institucional INGEMMET
Instituto Geológico, Minero y Metalúrgico – INGEMMET
Arco volcánico
Magma
Erupciones volcánicas
Geología
Linking magmatic processes and magma chemistry during the post-glacial to recent explosive eruptions of Ubinas volcano (southern Peru)
info:eu-repo/semantics/article
http://purl.org/pe-repo/ocde/ford#1.05.00
http://purl.org/pe-repo/ocde/ford#1.05.06
NL
https://doi.org/10.1016/j.jvolgeores.2020.107095
Journal of Volcanology and Geothermal Research
Peer reviewed
info:eu-repo/semantics/publishedVersion
Journal of Volcanology and Geothermal Research, volumen 407, artículo107095, 2020.

Files in This Item:
File Description SizeFormat 
Samaniego-Linking_magmatic_processes-Manuscrito.pdf14.59 MBAdobe PDFView/Open
Samaniego-Linking_magmatic_processes-Postprint.pdf834.93 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.